Extremophiles

, Volume 17, Issue 2, pp 329–337 | Cite as

Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert

  • Francesca Stomeo
  • Angel Valverde
  • Stephen B. Pointing
  • Christopher P. McKay
  • Kimberley A. Warren-Rhodes
  • Marla I. Tuffin
  • Mary Seely
  • Don A. Cowan
Original Paper

Abstract

The Namib Desert is considered the oldest desert in the world and hyperarid for the last 5 million years. However, the environmental buffering provided by quartz and other translucent rocks supports extensive hypolithic microbial communities. In this study, open soil and hypolithic microbial communities have been investigated along an East–West transect characterized by an inverse fog-rainfall gradient. Multivariate analysis showed that structurally different microbial communities occur in soil and in hypolithic zones. Using variation partitioning, we found that hypolithic communities exhibited a fog-related distribution as indicated by the significant East–West clustering. Sodium content was also an important environmental factor affecting the composition of both soil and hypolithic microbial communities. Finally, although null models for patterns in microbial communities were not supported by experimental data, the amount of unexplained variation (68–97 %) suggests that stochastic processes also play a role in the assembly of such communities in the Namib Desert.

Keywords

Bacteria Cyanobacteria Hypoliths Namib Desert Niche Soils 

Notes

Acknowledgments

The authors gratefully acknowledge F.D. Eckardt for providing Fig. 1a, and the National Research Foundation (South Africa) for support of this research.

References

  1. Abdo Z, Schuette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938CrossRefPubMedGoogle Scholar
  2. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693CrossRefPubMedGoogle Scholar
  3. Azua-Bustos A, Gonzalez-Silva C, Mancilla RA, Salas L, Gomez-Silva B, McKay CP, Vicuna R (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb Ecol 61:568–581CrossRefPubMedGoogle Scholar
  4. Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163CrossRefPubMedGoogle Scholar
  5. Bell G (2005) The co-distribution of species in relation to the neutral theory of community ecology. Ecology 86:1757–1770CrossRefGoogle Scholar
  6. Besemer K, Peter H, Logue JB, Langenheder S, Lindstrom ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468CrossRefPubMedGoogle Scholar
  7. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr K, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247CrossRefPubMedGoogle Scholar
  8. Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413CrossRefPubMedGoogle Scholar
  9. Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol 8:129–138CrossRefPubMedGoogle Scholar
  10. Chan Y, Lacap DC, Lau MC, Ha KY, Warren-Rhodes KA, Cockell CS, Cowan DA, McKay CP, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282CrossRefPubMedGoogle Scholar
  11. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434CrossRefPubMedGoogle Scholar
  12. Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science 328:1388–1391CrossRefPubMedGoogle Scholar
  13. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  14. Cockell CS, Stokes MD (2004) Widespread colonization by polar hypoliths. Nature 431:414CrossRefPubMedGoogle Scholar
  15. Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182CrossRefPubMedGoogle Scholar
  16. Cowan DA (2009) Cryptic microbial communities in Antarctic deserts. Proc Natl Acad Sci USA 106:19749–19750PubMedGoogle Scholar
  17. Cowan DA, Khan N, Pointing SB, Cary SC (2010) Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarct Sci 22:714–720CrossRefGoogle Scholar
  18. Cowan DA, Sohm JA, Makhalanyane TP, Capone DG, Green TGA, Cary SC, Tuffin IM (2011) Hypolithic communities: important nitrogen sources in Antarctic desert soils. Environ Microbiol Rep 3:581–586CrossRefGoogle Scholar
  19. De la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867CrossRefPubMedGoogle Scholar
  20. Drakare S, Liess A (2010) Local factors control the community composition of cyanobacteria in lakes while heterotrophic bacteria follow a neutral model. Freshw Biol 55:2447–2457CrossRefGoogle Scholar
  21. Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345CrossRefPubMedGoogle Scholar
  22. Eckardt FD, Soderberg K, Coop LJ, Muller AA, Vickery KJ, Grandin RD Jack C, Kapalanga TS, Henschel J (2012) The nature of moisture at Gobabeb, in the central Namib Desert. J Arid Environ. doi:10.1016/j.jaridenv.2012.01.011
  23. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631CrossRefPubMedGoogle Scholar
  24. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, Gophna U, Sharan R, Ruppin E (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nature Commun 2:589CrossRefGoogle Scholar
  25. Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621CrossRefGoogle Scholar
  26. Gotelli NJ, Entsminger GL (2009) EcoSim: Null models software for ecology. Version 7 (Acquired Intelligence Inc. and Kesey-Bear. Jericho, VT 05465. http://garyentsminger.com/ecosim.htm. 2009)
  27. Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613CrossRefPubMedGoogle Scholar
  28. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefPubMedGoogle Scholar
  29. Hansen MC, Tolker-Nielsen T, Givskov M, Molin S (1998) Biased 16S rDNA PCR amplification caused by interference from DNA flanking the template region. FEMS Microbiol Ecol 26:141–149CrossRefGoogle Scholar
  30. Henschel JR, Seely MK (2008) Ecophysiology of atmospheric moisture in the Namib Desert. Atmos Res 87:362–368CrossRefGoogle Scholar
  31. Horner-Devine MC, Silver JM, Leibold MA et al (2007) A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88:1345–1353CrossRefPubMedGoogle Scholar
  32. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton, p 448Google Scholar
  33. Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol 7:519–529CrossRefPubMedGoogle Scholar
  34. Khan N, Tuffin M, Stafford W, Cary C, Lacap DC, Pointing SB, Cowan D (2011) Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biol 34:1657–1668CrossRefGoogle Scholar
  35. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  36. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci USA 104:11436–11440CrossRefPubMedGoogle Scholar
  37. Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci USA 108:7850–7854CrossRefPubMedGoogle Scholar
  38. Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224CrossRefPubMedGoogle Scholar
  39. Ofiteru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, Sloan WT (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci USA 107:15345–15350CrossRefPubMedGoogle Scholar
  40. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625CrossRefPubMedGoogle Scholar
  41. Pointing SB, Belnap (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562CrossRefPubMedGoogle Scholar
  42. Pointing SB, Warren-Rhodes KA, Lacap DC, Rhodes KL, McKay CP (2007) Hypolithic community shifts occur as a result of liquid water availability along environmental gradients in China’s hot and cold hyperarid deserts. Environ Microbiol 9:414–424CrossRefPubMedGoogle Scholar
  43. Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. Proc Natl Acad Sci USA 106:19964–19969PubMedGoogle Scholar
  44. Prestel E, Salamitou S, Dubow MS (2008) An examination of the bacteriophages and bacteria of the Namib desert. J Microbiol 46:364–372CrossRefPubMedGoogle Scholar
  45. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, Freckleton RP, Green JL, Green LE, Killham K, Lennon JJ, Osborn AM, Solan M, van der Gast CJ, Young JPW (2007) Essay—the role of ecological theory in microbial ecology. Nat Rev Microbiol 5:384–392CrossRefPubMedGoogle Scholar
  46. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160CrossRefPubMedGoogle Scholar
  47. Reysenbach A, Pace N (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb FT, Place AR (eds) Archaea: a laboratory manual—thermophiles. Cold Spring Harbor Laboratory, NYGoogle Scholar
  48. Schlesinger WH, Pippen JS, Wallenstein MD, Hofmockel KS, Klepeis DM, Mahall BE (2003) Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology 84:3222–3231CrossRefGoogle Scholar
  49. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H-P, Harnik N, Leetmaa A, Lau N-C, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184CrossRefPubMedGoogle Scholar
  50. Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33:648–655CrossRefGoogle Scholar
  51. Soininen J, Lennon JJ, Hillebrand H (2007) A multivariate analysis of beta diversity across organisms and environments. Ecology 88:2830–2838CrossRefPubMedGoogle Scholar
  52. SSSA (1996) Methods of soil analysis, Part 3. Soil Science Society of America, Madison, pp 19–48Google Scholar
  53. Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85:74–79CrossRefGoogle Scholar
  54. Thomas DN (2005) Photosynthetic microbes in freezing deserts. Trends Microbiol 13:87–88CrossRefPubMedGoogle Scholar
  55. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250CrossRefPubMedGoogle Scholar
  56. Tracy CR, Streten-Joyce C, Dalton R, Nussear KE, Gibb KS, Christian KA (2010) Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ Microbiol 12:592–607CrossRefPubMedGoogle Scholar
  57. Ulrich W, Gotelli NJ (2007) Disentangling community patterns of nestedness and species co-occurrence. Oikos 116:2053–2061CrossRefGoogle Scholar
  58. Walker JJ, Pace NR (2007) Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347CrossRefPubMedGoogle Scholar
  59. Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez-Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb Ecol 52:389–398CrossRefPubMedGoogle Scholar
  60. Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y, Liu S, Zhuo P, McKay CP (2007) Cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61:470–482CrossRefPubMedGoogle Scholar
  61. Wong FKY, Lacap DC, Lau MCY, Aitchison JC, Cowan DA, Pointing SB (2010) Hypolithic microbial community of quartz pavement in the high-altitude tundra of Central Tibet. Microb Ecol 60:730–739CrossRefPubMedGoogle Scholar
  62. Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. ISME J 2:308–320CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Francesca Stomeo
    • 1
    • 6
  • Angel Valverde
    • 1
    • 5
  • Stephen B. Pointing
    • 2
  • Christopher P. McKay
    • 3
  • Kimberley A. Warren-Rhodes
    • 3
  • Marla I. Tuffin
    • 1
  • Mary Seely
    • 4
  • Don A. Cowan
    • 1
    • 5
  1. 1.Institute for Microbial Biotechnology and Metagenomics (IMBM)University of the Western CapeCape TownSouth Africa
  2. 2.School of Applied SciencesAuckland University of TechnologyAucklandNew Zealand
  3. 3.NASA-Ames Research CenterMoffett FieldUSA
  4. 4.Desert Research Foundation of NamibiaWindhoekNamibia
  5. 5.Department of Genetics, Centre for Microbial Ecology and Genomics (CMEG)University of PretoriaPretoriaSouth Africa
  6. 6.Biosciences eastern and central Africa (BecA)International Livestock Research Institute (ILRI) HubNairobiKenya

Personalised recommendations