, Volume 17, Issue 2, pp 311–327 | Cite as

Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer

  • Stephanie Lerm
  • Anke Westphal
  • Rona Miethling-Graff
  • Mashal Alawi
  • Andrea Seibt
  • Markus Wolfgramm
  • Hilke Würdemann
Original Paper


The microbial diversity of a deep saline aquifer used for geothermal heat storage in the North German Basin was investigated. Genetic fingerprinting analyses revealed distinct microbial communities in fluids produced from the cold and warm side of the aquifer. Direct cell counting and quantification of 16S rRNA genes and dissimilatory sulfite reductase (dsrA) genes by real-time PCR proved different population sizes in fluids, showing higher abundance of bacteria and sulfate reducing bacteria (SRB) in cold fluids compared with warm fluids. The operation-dependent temperature increase at the warm well probably enhanced organic matter availability, favoring the growth of fermentative bacteria and SRB in the topside facility after the reduction of fluid temperature. In the cold well, SRB predominated and probably accounted for corrosion damage to the submersible well pump and iron sulfide precipitates in the near wellbore area and topside facility filters. This corresponded to lower sulfate content in fluids produced from the cold well as well as higher content of hydrogen gas that was probably released from corrosion, and maybe favored growth of hydrogenotrophic SRB. This study reflects the high influence of microbial populations for geothermal plant operation, because microbiologically induced precipitative and corrosive processes adversely affect plant reliability.


Anaerobic bacteria Biodiversity Ecology Phylogeny Physiology of thermophiles Engineering issues and practical application Halophiles Molecular biology Thermophiles 


  1. Aerts JMFG, Lauwers AM, Heinen W (1985) Temperature-dependent lipid content and fatty acid composition of three thermophilic bacteria. Anton Leeuw 51:155–165CrossRefGoogle Scholar
  2. Akpabio EJ, Ekott EJ, Akpan ME (2011) Inhibition and control of microbiologically influenced corrosion in oilfield materials. Environ Res J 5(2):59–65CrossRefGoogle Scholar
  3. Alawi M, Lerm S, Vetter A, Wolfgramm M, Seibt A, Würdemann H (2011) Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy. Grundwasser 16(2):105–112CrossRefGoogle Scholar
  4. Amy PS (1997) Microbial dormancy and survival in the subsurface. In: Amy P, Haldeman D (eds) The microbiology of the terrestrial subsurface. CRC Press, Florida, pp 185–203Google Scholar
  5. Avidano L, Gamalero E, Cossa GP, Carraro E (2005) Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl Soil Ecol 30:21–33CrossRefGoogle Scholar
  6. Balkwill D, Reeves R, Drake G, Reeves J, Crocker F, King M, Boone D (1997) Phylogenetic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol Rev 20:201–216CrossRefPubMedGoogle Scholar
  7. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83CrossRefPubMedGoogle Scholar
  8. Bastin ES, Greer FE, Merritt CA, Moulton G (1926) The presence of sulphate reducing bacteria in oil field waters. Science 63:21–24CrossRefPubMedGoogle Scholar
  9. Beech IB, Gaylarde CC (1999) Recent advances in the study of biocorrosion—an overview. Rev Microbiol 30:177–190CrossRefGoogle Scholar
  10. Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19CrossRefGoogle Scholar
  11. Birkeland NK (2005) Sulfate-reducing bacteria and archaea. In: Olivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 35–54Google Scholar
  12. Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS et al (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Envion Microbiol 69(10):6143–6151CrossRefGoogle Scholar
  13. Bothe H, Jost G, Schloter M, Ward BB, Witzel K (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690CrossRefPubMedGoogle Scholar
  14. Brons HE, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Wat Res 25:729–736CrossRefGoogle Scholar
  15. Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485CrossRefPubMedGoogle Scholar
  16. Burke V, Wiley AJ (1937) Bacteria in coal. J Bacteriol 34:475–481PubMedGoogle Scholar
  17. Campbell IL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363PubMedGoogle Scholar
  18. Cayol JL, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia JL (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44(3):534–540CrossRefPubMedGoogle Scholar
  19. Cayol JL, Fardeau ML, Garcia JL, Ollivier B (2002) Evidence of interspecies hydrogen transfer from glycerol in saline environments. Extremophiles 6:131–134CrossRefPubMedGoogle Scholar
  20. Characklis WG (1990) Microbial fouling. In: Characklis WG, Marshall KC (eds) Biofilms. Wiley, New York, pp 523–584Google Scholar
  21. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ et al (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322:275–278CrossRefPubMedGoogle Scholar
  22. Coetser SE, Cloete TE (2005) Biofouling and biocorrosion in industrial water systems. Crit Rev Microbial 31(4):213–232CrossRefGoogle Scholar
  23. Criaud A, Fouillac C, Marty B, Brach M, Wei HF (1987) Gas geochemistry of the dogger geothermal aquifer. Proceedings, Twelfth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 20–22, 1987 SGP-TR-109Google Scholar
  24. Cullimore DR (1999) Microbiology of well biofouling. Lewis Publishers, Boca RatonGoogle Scholar
  25. Cullimore DR (2007) Practical manual of groundwater microbiology, 2nd edn. CRC Press/Taylor and Francis GroupGoogle Scholar
  26. Cuypers H, Zumft WG (1993) Anaerobic control of denitrification in Pseudomonas stutzeri escapes mutagenesis of an fnr-like gene. J Bacteriol 175:7236–7246PubMedGoogle Scholar
  27. D′Hondt S, Rutherford S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070CrossRefPubMedGoogle Scholar
  28. Dalas E, Koutsoukos PG (1989) Calcium carbonate scale formation on heated metal surfaces. Geothermics 18(1/2):83–88CrossRefGoogle Scholar
  29. Daumas S, Cord-Ruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54(2):165–178CrossRefPubMedGoogle Scholar
  30. Demadis KD (2003) Combating heat exchanger fouling and corrosion phenomena in process water. In: Shah RK (ed) Compact heat exchangers and enhancement technology for the process industries. Begell House Inc, New York, pp 483–490Google Scholar
  31. Denger K, Warthmann R, Ludwig W, Schink B (2002) Anaerophaga thermohalophila gen. nov., sp nov., a moderately thermohalophilic, strictly anaerobic fermentative bacterium. Int J Syst Evol Microbiol 52:173–178PubMedGoogle Scholar
  32. Dohrmann AB, Tebbe CC (2004) Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In: Kowalchuk GA, Bruijn FJ de, Head IM, Akkermans AD, van Elsas JD (eds) Molecular Microbial Ecology Manual. 2nd edn. Dodrecht: Kluwer Academic Publisher 3.16, pp 809–838Google Scholar
  33. Drysdale G, Kasan H, Bux F (1999) Denitrification by heterotrophic bacteria during activated sludge treatment. Water SA 25:357–362Google Scholar
  34. Flemming HC (2002) Biofouling in water systems—cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640CrossRefPubMedGoogle Scholar
  35. Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196CrossRefPubMedGoogle Scholar
  36. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156:609–643CrossRefGoogle Scholar
  37. Gallup DL (2002) Investigations of organic inhibitors for silica scale control in geothermal brines. Geothermics 31:415–430CrossRefGoogle Scholar
  38. Gallup DL (2009) Production engineering in geothermal technology: a review. Geothermics 38:326–334CrossRefGoogle Scholar
  39. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205CrossRefPubMedGoogle Scholar
  40. Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263–282CrossRefPubMedGoogle Scholar
  41. Goldscheider N, Hunkeler D, Rossi P (2006) Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 0:1–16Google Scholar
  42. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwat Biol 54:649–677CrossRefGoogle Scholar
  43. Grigoryan A, Voordouw G (2008) Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle. Ann NY Acad Sci 1125:345–352CrossRefPubMedGoogle Scholar
  44. Hamilton WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Ann Rev Microbiol 39:195–217CrossRefGoogle Scholar
  45. Hamilton WA (2003) Microbiologically influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76CrossRefPubMedGoogle Scholar
  46. Harshey RM (2003) Bacterial motility on surface: many ways to a common goal. Annu Rev Microbiol 57:249–273CrossRefPubMedGoogle Scholar
  47. Howsam P (1988) Biofouling in wells and aquifers. J Inst Water Environ Manag 2:209–215CrossRefGoogle Scholar
  48. Hubert C, Arnosti C, Brüchert V, Loy A, Vandieken V, Jørgensen BB (2010) Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature. Environ Microbiol 12(4):1089–1104CrossRefPubMedGoogle Scholar
  49. Jakobsen TF, Kjeldsen KU, Ingvorsen K (2006) Desulfohalobium utahense sp. nov., a moderately halophilic, sulfate-reducing bacterium isolated from Great Salt Lake. Int J Syst Evol Microbiol 56:2063–2069CrossRefPubMedGoogle Scholar
  50. Javaherdashti R (2011) Impact of sulphate-reducing bacteria on the performance of engineering materials. Appl Microbiol Biotechnol 91:1507–1517CrossRefPubMedGoogle Scholar
  51. Jesußek A, Grandel S, Dahmke A (2012) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci. doi:10.1007/s12665-012-2037-9 Google Scholar
  52. Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert P, Zuber MT, Bunce M, Rønn R, Gilichinsky D, Froese D, Willerslev E (2007) Ancient bacteria show evident of DNA repair. PNAS 104:14401–14405CrossRefPubMedGoogle Scholar
  53. Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643–645CrossRefGoogle Scholar
  54. Kabus F, Wolfgramm M (2009) Aquifer thermal energy storage in Neubrandenburg—monitoring throughout three years of regular operation. In: Proceedings of the 11th International Conference on Energy Storage 2009, Stockholm, Sweden, pp 8Google Scholar
  55. Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304CrossRefGoogle Scholar
  56. Kalmbach S, Manz W, Wecke J, Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49:769–777CrossRefPubMedGoogle Scholar
  57. Kaye JZ, Baross JA (2004) Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface. Appl Environ Microbiol 70(10):6220–6229CrossRefPubMedGoogle Scholar
  58. Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress compounds to high-osmolality environments. Arch Microbiol 170:319–330CrossRefPubMedGoogle Scholar
  59. Klotzbücher T, Kappler A, Straub KL, Haderlein SB (2007) Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers. Geothermics 36:348–361CrossRefGoogle Scholar
  60. Kumar S, Nussinov R (2001) How do thermophilic proteins deal with heat. CMLS Cell Mol Life Sci 58:1216–1233CrossRefGoogle Scholar
  61. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  62. Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011a) Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 16(2):93–104CrossRefGoogle Scholar
  63. Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011b) Mikrobiologisches Monitoring in zwei geothermisch genutzten Aquiferen des Norddeutschen Beckens. Z Geol Wiss 39(3–4):195–212Google Scholar
  64. Lin LH, Wang PL, Rumble D, Lippmann-Pipke J, Boice E, Pratt LM et al (2006) Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314:479–482CrossRefPubMedGoogle Scholar
  65. Little BJ, Lee JS (2007) Microbiologically influenced corrosion., Wiley series in corrosionWiley, New JerseyCrossRefGoogle Scholar
  66. Little BL, Wagner PA, Hart KR, Ray RI (1996) Spatial relationships between bacteria and localized corrosion. Corrosion/96, paper no. 278 (Houston, TX: NACE International), pp 8Google Scholar
  67. Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33(3):365–381CrossRefGoogle Scholar
  68. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefPubMedGoogle Scholar
  69. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116CrossRefPubMedGoogle Scholar
  70. Miranda-Herrera C, Sauceda I, González-Sánchez J, Acuña N (2010) Corrosion degradation of pipeline carbon steels subjected to geothermal plant conditions. Anti-Corros Methods Mater 57(4):167–172CrossRefGoogle Scholar
  71. Möller P, Weise SM, Tesmer M, Dulski P, Pekdeger A, Bayer U, Magri F (2008) Salinization of groundwater in the North German Basin: results from conjoint investigation of major, trace element and multi-isotope distribution. Int J Earth Sci (Geol Rundsch) 97:1057–1073CrossRefGoogle Scholar
  72. Morse JW, Millero FJ, Cornwell JC, Rickard D (1987) The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth-Sci Rev 24:1–42CrossRefGoogle Scholar
  73. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek Int J Gen Mol Microbiol 73:127–141CrossRefGoogle Scholar
  74. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454PubMedGoogle Scholar
  75. Neria-Gonzalez I, Wang ET, Ramirez F, Romero JM, Hernandez-Rodrigues C (2006) Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12:122–133CrossRefPubMedGoogle Scholar
  76. Obst K, Wolfgramm M (2010) Geothermische, balneologische und speichergeologische Potenziale und Nutzungen des tieferen Untergrundes der Region Neubrandenburg. Neubrandenburger Geol Beitr 10:145–174Google Scholar
  77. Ohta H, Hattori R, Ushiba Y, Mitsui H, Ito M, Watanabe H, Tonosaki A, Hattori T (2004) Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 54:2185–2190CrossRefPubMedGoogle Scholar
  78. Parkes RJ, Sass (2007) The sub-seafloor biosphere and sulphate-reducing prokaryotes: their presence and significance. In: Barton L, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge, pp 329–358CrossRefGoogle Scholar
  79. Parkes RJ, Cragg BA, Bale SJ, Getlifff JM, Goodman K, Rochelle PA et al (1994) Deep bacterial biosphere in Pacific ocean sediments. Nature 371:410–413CrossRefGoogle Scholar
  80. Parkes RJ, Cragg BA, Wellsbury (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28CrossRefGoogle Scholar
  81. Patureau D, Zumstein E, Delgenes JP, Moletta R (2000) Aerobic denitrifiers isolated from diverse natural and managed ecosystems. Microb Ecol 39:145–152CrossRefPubMedGoogle Scholar
  82. Philpotts AR (1990) Principles of igneous and metamorphic petrology. Prentice Hall, New Jersey, p 498Google Scholar
  83. Pryfogle PA (2005) Monitoring biological activity at geothermal power plants. Idaho National LaboratoryGoogle Scholar
  84. Reardon EJ (1995) Anaerobic corrosion of granular iron: measurement and interpretation of hydrogen evolution rates. Environ Sci Technol 29:2936–2945CrossRefPubMedGoogle Scholar
  85. Roberts MF (2005) Organic compatible salutes of halotolerant and halophilic microorganisms. Sal Syst 1:5–30CrossRefGoogle Scholar
  86. Rogers JR, Bennett PC, Choi WJ (1998) Feldspars as a source of nutrients for microorganisms. J Am Miner 83:1532–1540Google Scholar
  87. Sand W (2003) Microbial life in geothermal waters. Geothermics 32:655–667CrossRefGoogle Scholar
  88. Sass H, Cypionka H (2004) Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov. System Appl Microbiol 27:541–548CrossRefGoogle Scholar
  89. Schmidt T, Mangold D, Müller-Steinhagen H (2004) Central solar heating plants with seasonal storage in Germany. Sol Energy 76:165–174CrossRefGoogle Scholar
  90. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR–single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876PubMedGoogle Scholar
  91. Seibt P, Kabus F (2006) Aquifer thermal energy storage—projects implemented in Germany. Proceedings of Ecostock, New Jersey, p 8Google Scholar
  92. Seibt A, Thorwart K (2011) Untersuchungen zur Gasphase geothermisch genutzter Tiefenwässer und deren Relevanz für den Anlagenbetrieb. Z Geol Wiss 39(3–4):261–274Google Scholar
  93. Shock EL (2009) Minerals as energy sources for microorganisms. Econ Geol 104:1235–1248CrossRefGoogle Scholar
  94. Skinner BJ, White DE, Rose HJ, Mays RE (1967) Sulfides associated with the Salton sea geothermal brine. Econ Geol 62:316–330CrossRefGoogle Scholar
  95. Steube C, Richter S, Griebler C (2009) First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17:23–35CrossRefGoogle Scholar
  96. Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B (2004) Diversity of ferrous iron-oxidizing, nitrate reducing bacteria and their involvement in oxygen independent iron cycling. Geomicrobiol J 21:371–378CrossRefGoogle Scholar
  97. Struchtemeyer CG, Davis JP, Elshahed MS (2011) Influence of the drilling formulation mud process on the microbial communities in thermogenic natural gas wells of the Barnett shale. Appl Environ Microbiol 77(14):4744–4753CrossRefPubMedGoogle Scholar
  98. Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, D.C., pp 201–213Google Scholar
  99. Suzina NE, Mulyukin AL, Kozlova AN, Shorokova AP, Dmitriev VV, Barinova ES, Mokhova ON, El’-Registan GI, Duda VI (2004) Ultrastructure of resting cells of some non-spore-forming bacteria. Microbiology 73:516–529CrossRefPubMedGoogle Scholar
  100. Taylor SW, Lange CR, Lesold EA (1997) Biofouling of contaminated ground-water recovery wells: characterization of microorganisms. Groundwater 35(2):973–980CrossRefGoogle Scholar
  101. Teske A, Stahl DA (2002) Microbial mats and biofilms: evolution, structure, and function of fixed microbial communities. In: Staley JT (ed) Reysenbach A–L biodiversity of microbial life. Wiley, New York, pp 49–100Google Scholar
  102. Valdez B, Schorr M, Quintero M, Carrillo M, Zlatev R, Stoytcheva M, de Dios Ocampo J (2009) Corrosion and scaling at Cerro Prieto geothermal field. Anti-Corros Methods Mater 56(1):28–34CrossRefGoogle Scholar
  103. Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67(4):503–549CrossRefPubMedGoogle Scholar
  104. Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, DC, pp 123–142Google Scholar
  105. Vetter A, Mangelsdorf K, Schettler G, Seibt A, Wolfgramm M, Rauppach K, Vieth-Hillebrand A (2012) Fluid chemistry and impact of different operating modes on microbial community at Neubrandenburg heat storage (Northeast German Basin). Organ Geochem 53:8–15CrossRefGoogle Scholar
  106. Videla HA (2002) Prevention and control of biocorrosion. Intern Biodet Biodeg 49:259–270CrossRefGoogle Scholar
  107. Vieth A, Mangelsdorf K, Sykes R, Horsfield B (2008) Water extraction of coals—potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere. Organ Geochem 39(8):985–991CrossRefGoogle Scholar
  108. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982PubMedGoogle Scholar
  109. Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in the woodlark basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70CrossRefPubMedGoogle Scholar
  110. Whitman WB, Coleman DC, Wiebe JW (1998) Prokaryotes: the Unseen Majority. Proc Natl Acad Sci USA 95:6578–6583CrossRefPubMedGoogle Scholar
  111. Wilms R, Sass H, Kopke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59(3):611–621CrossRefPubMedGoogle Scholar
  112. Wilson JT, McNabb JF, Balkwill DL, Ghiorse WC (2006) Enumeration and characterization of bacteria indigenous to a shallow water-table aquifer. Ground Water 21(2):134–142CrossRefGoogle Scholar
  113. Wolfgramm M, Seibt A (2006) Geochemisches Monitoring des geothermalen Tiefenspeichers in Neubrandenburg. GTV-Tagung, Karlsruhe, pp 388–397Google Scholar
  114. Wolfgramm M, Rauppach K, Thorwarth K (2011) Mineralneubildung und Partikeltransport im Thermalwasserkreislauf geothermischer Anlagen Deutschland. Z Geol Wiss 39(3–4):213–239Google Scholar
  115. Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 89:670–679CrossRefPubMedGoogle Scholar
  116. Zhu XY, Lubeck J, Kilbane JJ II (2003) Characterization of microbial communities in gas industry pipelines. Appl Environ Microbiol 69(9):5354–5363CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Stephanie Lerm
    • 1
  • Anke Westphal
    • 1
  • Rona Miethling-Graff
    • 1
  • Mashal Alawi
    • 1
  • Andrea Seibt
    • 2
  • Markus Wolfgramm
    • 3
  • Hilke Würdemann
    • 1
  1. 1.Helmholtz Centre Potsdam GFZ German Research Centre for GeosciencesInternational Centre for Geothermal Research ICGRPotsdamGermany
  2. 2.Boden Wasser Gesundheit GbR. (BWG)NeubrandenburgGermany
  3. 3.Geothermie Neubrandenburg (GTN)NeubrandenburgGermany

Personalised recommendations