Advertisement

Extremophiles

, Volume 17, Issue 2, pp 289–299 | Cite as

Anammox bacterial populations in deep marine hypersaline gradient systems

  • Sara Borin
  • Francesca Mapelli
  • Eleonora Rolli
  • Bongkeun Song
  • Craig Tobias
  • Markus C. Schmid
  • Gert J. De Lange
  • Gert J. Reichart
  • Stefan Schouten
  • Mike Jetten
  • Daniele Daffonchio
Original Paper

Abstract

To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater–brine haloclines of the deep anoxic hypersaline basins Bannock and L’Atalante were sampled in intervals of 10 cm with increasing salinity. 15N isotope pairing incubation experiments showed the production of 29N2 and 30N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L’Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L−1 day−1 while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L’Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus ‘Candidatus Scalindua’ and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. ‘Scalindua brodae’ like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L’Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.

Keywords

Anaerobic ammonium oxidation Chemocline Hypersaline basins biodiversity Anammox activity 16S rRNA gene library 

Notes

Acknowledgments

We thank the masters and crews of the R/V Urania, R/V Pelagia, R/V Universitatis for excellent technical assistance. K. Bakker is acknowledged for chemical analyses on board and at NIOZ (Texel, The Netherlands). Financial support was obtained from NWO projects MOCCHA and MIDDLE. Song and Tobias were supported by NSF (Biological Oceanography, grant OCE-0851435), Jetten by ERC (grant ERC232937), Rolli and Mapelli were supported by Università degli Studi di Milano, European Social Found (FSE) and Regione Lombardia (contract “Dote Ricerca”). This work has been conducted in the frame of the European Community FP7-KBBE-2010-4 project ULIXES, grant agreement N. 266473.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Borin S, Brusetti L, Mapelli F, D’Auria G, Brusa T, Marzorati M et al (2009) Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. Proc Natl Acad Sci USA 106:9151–9156PubMedCrossRefGoogle Scholar
  3. Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107:577–589PubMedCrossRefGoogle Scholar
  4. Byrne N, Strous M, Crépeau V, Kartal B, Birrien JJ, Schmid M, Lesongeur F, Schouten S, Jaeschke A, Jetten M, Prieur D, Godfroy A (2009) Presence and activity of anaerobic ammonium-oxidizing bacteria at deep sea hydrothermal vents. ISME J 3:117–123PubMedCrossRefGoogle Scholar
  5. Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, Revsbech NP, Ulloa O (2010) A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast. Science 330:1375–1378PubMedCrossRefGoogle Scholar
  6. Chen Y, Joly HA, Belzile N (1997) Determination of elemental sulphur in environmental samples by gas chromatography–mass spectrometry. Chem Geol 137:195–200CrossRefGoogle Scholar
  7. CIESM (2008) The Messinian Salinity Crisis from mega-deposits to microbiology—a consensus report. No. 33. CIESM Workshop Monographs. In: Briand F (ed) Commission Internationale pour l’Exploration de la Mer Mediterranee, Monaco, pp 1–168Google Scholar
  8. Daffonchio D, Borin S, Brusa T, Brusetti L, Van der Wielen PWJJ, Bolhuis H et al (2006) Stratified prokaryote network in the oxic–anoxic transition of a deep sea halocline. Nature 440:203–207PubMedCrossRefGoogle Scholar
  9. Dale OR, Tobias CR, Song B (2009) Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ Microbiol 11:1194–1207PubMedCrossRefGoogle Scholar
  10. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water colun of Gulfo Dulce, Costa Rica. Nature 422:606–608PubMedCrossRefGoogle Scholar
  11. Dang HY, Chen RP, Wang L, Guo LZ, Chen PP, Tang ZW, Tian F, Li SZ, Klotz MG (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol 76:7036–7047PubMedCrossRefGoogle Scholar
  12. De Lange GJ, Catalano G, Klinkhammer GP, Luther GW III (1990a) The interface between oxic seawater and the anoxic Bannock Brine; its sharpness and the consequneces for the redox-related cycling of Mn and Ba. Mar Chem 31:205–217CrossRefGoogle Scholar
  13. De Lange GJ, Middelburg JJ, Van Der Weijden CH, Catalano G, Luther GW III, Hydes DJ, Woittiez JRW, Klinkhammer GP (1990b) Composition of anoxic hypersaline brines in the Tyro and Bannock Basins, eastern Mediterranean. Mar Chem 31:63–88CrossRefGoogle Scholar
  14. Dong LF, Smith CJ, Papaspyrou S, Stott A, Osborn MA, Nedwell DB (2009) Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne estuary, United Kingdom). Appl Environ Microbiol 75:3171–3179PubMedCrossRefGoogle Scholar
  15. Hamersley RM, Lavik G, Woebken D, Rattray JE, Lam P, Hopmans EC, Sinninghe Damsté JS, Krüger S, Graco M, Gutiérrez D, Kuypers MMM (2007) Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol Oceanogr 52:923–933CrossRefGoogle Scholar
  16. Hamersley MR, Woebken D, Boehrer B, Schultze M, Lavik G, Kuypers MMM (2009) Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany). Sys Appl Microbiol 32:571–582CrossRefGoogle Scholar
  17. Hannig M, Lavik G, Kuypers MMM, Woebken D, Martens-Habena W, Jügens K (2007) Shift from denitrification to anammox after inflow events in the central Baltic Sea. Limnol Oceanogr 52:1336–1345CrossRefGoogle Scholar
  18. Harhangi HR, Le Roy M, van Alen T, Hu B-I, Groen J, Kartal B, Tringe SG, Quan Z-X, Jetten MSM, Op den Camp HJM (2012) Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol 78:752–758PubMedCrossRefGoogle Scholar
  19. Hietanen S, Jäntti H, Buizert C, Jürgens K, Labrenz M, Voss M, Kuparinen J (2012) Hypoxia and nitrogen processing in the Baltic Sea water column. Limnol Oceanogr 57:325–337Google Scholar
  20. Hopmans EC, Kienhuis MVM, Rattray JE, Jaeschke A, Schouten S, Sinninghe Damsté JS (2006) Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 20:2099–2103PubMedCrossRefGoogle Scholar
  21. Jaeschke A, Op den Camp HJM, Harhangi H, Klimiuk A, Hopmans EC, Jetten MSM, Schouten S, Sinninghe Damsté JS (2009) 16S rRNA gene and lipid biomarker evidence for anaerobic ammonium-oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Ecol 67:343–350CrossRefGoogle Scholar
  22. Jensen MM, Kuypers MMM, Lavik G, Thamdrup B (2008) Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea. Limnol Oceanogr 53:23–36CrossRefGoogle Scholar
  23. Jensen MM, Lam P, Revsbech NP, Nagel B, Gaye B (2011) Intensive nitrogen loss over the Omani Shelf due to anammox coupled with dissimilatory nitrite reduction to ammonium. ISME J 5:1–11Google Scholar
  24. Jetten MSM, Schmid M, Van de Pas-Schoonen KT, Damste JSS, Strous M (2005) Anammox organisms: enrichment, cultivation and environmental analysis. Methods Enzymol 397:34–57PubMedCrossRefGoogle Scholar
  25. Jetten MSM, van Niftrik L, Strous M, Kartal B, Keltjens JT, Op den Camp HJM (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84PubMedGoogle Scholar
  26. Koop-Jackobsen K, Giblin AE (2009) Anammox in tidal marsh sediments: the role of salinity, nitrogen loading, and marsh vegetation. Estuaries Coasts 32:238–245CrossRefGoogle Scholar
  27. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jørgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611PubMedCrossRefGoogle Scholar
  28. Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R et al (2005) Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA 102:6478–6483PubMedCrossRefGoogle Scholar
  29. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106:4752–4757PubMedCrossRefGoogle Scholar
  30. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235PubMedCrossRefGoogle Scholar
  31. Luther GW III, Catalano G, De Lange GJ, Woittiez JRW (1990) Reduced sulphur in the hypersaline anoxic basins of the Mediterranean Sea. Mar Chem 31:137–152CrossRefGoogle Scholar
  32. Rattray J (2008) Ladderane lipids in annamox bacteria: occurrence, biosynthesis and application as environmental markers. PhD thesis, University of UtrechtGoogle Scholar
  33. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  34. Schmid M, Walsh K, Webb R, Rijpstra WI, van de Pas-Schoonen K, Verbruggen MJ et al (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538PubMedCrossRefGoogle Scholar
  35. Schmid M, Maas B, Dapena A, Van de Pas-Schoonen K, Van de Vossemberg J, Kartal B et al (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684PubMedCrossRefGoogle Scholar
  36. Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J et al (2007) Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 9:1476–1484PubMedCrossRefGoogle Scholar
  37. Schmidt I, Sliekers O, Schmid M, Cirpus I, Strous M, Bock E, Kuenen JG, Jetten MSM (2001) Aerobic and anaerobic ammonia oxidizing bacteria—competitors or natural partners? FEMS Microbiol Ecol 39:175–181Google Scholar
  38. Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376PubMedCrossRefGoogle Scholar
  39. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  40. Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microbiol 68:1312–1318PubMedCrossRefGoogle Scholar
  41. Thamdrup B, Dalsgaard T, Jensen MM, Ulloa O, Farias L, Escribano R (2006) Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol Oceanogr 51:2145–2156CrossRefGoogle Scholar
  42. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 24:4876–4882CrossRefGoogle Scholar
  43. van de Vossenberg J, Rattray JE, Geerts W, Kartal B, van Niftrik L, van Donselaar EG et al (2008) Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ Microbiol 10(11):3120–3129PubMedCrossRefGoogle Scholar
  44. Van der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedCrossRefGoogle Scholar
  45. Wakeham SG, Amann R, Freeman KH, Hopmans EC, Jørgensen BB, Putnam IF et al (2007) Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Org Geochem 38:2070–2097CrossRefGoogle Scholar
  46. Ward BB, Tuit CB, Jayakumar A, Rich JJ, Moffett J, Vaqvi SWA (2008) Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep-Sea Res. I 55:1672–1683CrossRefGoogle Scholar
  47. Woebken D, Lam P, Kuypers MMM, Naqvi SWA, Kartal B, Strous M et al (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119PubMedCrossRefGoogle Scholar
  48. Yakimov MM, La Cono V, Denaro R, D’Auria G, Decembrini F, Timmis KN et al (2007) Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J 0:1–13Google Scholar
  49. Zhang Y, Ruan XH, Op den Camp HJMO et al (2007) Diversity and abundance of aerobic and anaerobic ammonium-oxidizing bacteria in freshwater sediments of the Xinyi River (China). Environ Microbiol 9:2375–2382PubMedCrossRefGoogle Scholar
  50. Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, Yin CQ (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905–1912PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2013

Authors and Affiliations

  • Sara Borin
    • 1
  • Francesca Mapelli
    • 1
  • Eleonora Rolli
    • 1
  • Bongkeun Song
    • 2
  • Craig Tobias
    • 3
  • Markus C. Schmid
    • 4
    • 7
  • Gert J. De Lange
    • 5
  • Gert J. Reichart
    • 5
  • Stefan Schouten
    • 5
    • 6
  • Mike Jetten
    • 4
  • Daniele Daffonchio
    • 1
  1. 1.Department of Food, Environmental and Nutritional Sciences, DeFENSUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Biology and Marine BiologyUniversity of North Carolina WilmingtonWilmingtonUSA
  3. 3.Department of Marine SciencesUniversity of ConnecticutGreotonUSA
  4. 4.Department of MicrobiologyIWWR, Radboud University NijmegenNijmegenThe Netherlands
  5. 5.Faculty of Geosciences, GeochemistryUtrecht UniversityUtrechtThe Netherlands
  6. 6.Department of Marine Organic BiochemistryRoyal Netherlands Institute for Sea Research (NIOZ)TexelThe Netherlands
  7. 7.Department of Microbial EcologyUniversity of ViennaViennaAustria

Personalised recommendations