, Volume 17, Issue 1, pp 87–98 | Cite as

Phylogenetic diversity of bacterial and archaeal communities inhabiting the saline Lake Red located in Sovata, Romania

  • Andrea K. BorsodiEmail author
  • Tamás Felföldi
  • István Máthé
  • Vivien Bognár
  • Mónika Knáb
  • Gergely Krett
  • Laura Jurecska
  • Erika M. Tóth
  • Károly Márialigeti
Original Paper


Lake Red is one of the saline lakes which were formed as a consequence of salt massif dissolution at the foot of the Gurghiu Mountains (Central Romania) at the end of the nineteenth century. The lake water had approximately 15 % w/v salt content. Phylogenetic diversity of prokaryotes inhabiting the water and sediment of the lake was studied using cultivation and cultivation-independent methods following a sampling in spring 2009. According to the results of 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), the richness of Bacteria was higher than Archaea on the basis of the number and position of dominant bands in the gel. Sequences from DGGE bands were affiliated with Gammaproteobacteria (Halomonas and Alkalilimnicola) and Bacteroidetes (Psychroflexus) as well as Euryarchaeota. Cultivation from five different saline media resulted in 101 bacterial strains of which Gammaproteobacteria (Halomonas, Marinobacter and Salinivibrio) were the most abundant. Firmicutes (Bacillus) and Alphaproteobacteria (Aurantimonas and Roseovarius) were also identified among the isolated strains. The 16S rRNA genes from 82 bacterial and 95 archaeal clones were also phylogenetically analyzed. Bacterial clones were related to various genera of Gammaproteobacteria (Alkalilimnicola, Alkalispirillum, Arhodomonas, Halomonas, Saccharospirillum), Bacteroidetes (Gracilimonas, Psychroflexus) and Alphaproteobacteria (Oceanicola, Roseinatronobacter, Roseovarius). All of the archaeal clones sequenced corresponded to a homologous cluster affiliated with Halopelagius.


Saline lake Phylogenetic diversity 16S rRNA gene Cultivation Denaturing gradient gel electrophoresis Cloning 



The technical contribution of Gábor Cebe and Balázs Vajna is gratefully acknowledged.

Supplementary material

792_2012_496_MOESM1_ESM.docx (15 kb)
Supplementary Table 1 PCR primer sequences and thermal profiles used for the amplification of 16S rRNA gene fragments from Bacteria and Archaea (DOCX 14 kb)
792_2012_496_MOESM2_ESM.docx (46 kb)
Supplementary Fig. 1 Rarefaction curves for the different ARDRA patterns of 16S rRNA gene bacterial and archaeal clones retrieved from Lake Red (DOCX 45 kb)
792_2012_496_MOESM3_ESM.jpg (164 kb)
Supplementary Fig. 2 Distribution of Lake Red Strains and clones within the bacterial genera (JPEG 163 kb)


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736PubMedCrossRefGoogle Scholar
  3. Baati H, Amdouni R, Gharsallah N, Sghir A, Ammar E (2010) Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr Microbiol 60:157–161PubMedCrossRefGoogle Scholar
  4. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555PubMedCrossRefGoogle Scholar
  5. Borsodi AK, Kiss IR, Cech G, Vajna B, Tóth EM, Márialigeti K (2010) Diversity and activity of cultivable aerobic planktonic bacteria of a saline lake located in Sovata, Romania. Folia Microbiol 55:461–466CrossRefGoogle Scholar
  6. Bulgăreanu VAC (1996) Protection and management of anthroposaline lakes in Romania. Lakes Reserv Res Manag 2:211–229CrossRefGoogle Scholar
  7. Caton TM, Witte LM, Ngyuen HD, Buchheim JA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462PubMedCrossRefGoogle Scholar
  8. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261PubMedCrossRefGoogle Scholar
  9. Cui HL, Li XY, Gao X, Xu XW, Zhou YG, Liu HC, Oren A, Zhou PJ (2010) Halopelagius inordinatus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Int J Syst Evol Microbiol 60:2089–2093PubMedCrossRefGoogle Scholar
  10. Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69PubMedCrossRefGoogle Scholar
  11. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504PubMedCrossRefGoogle Scholar
  12. Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (eds) (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DCGoogle Scholar
  13. Felföldi T, Somogyi B, Márialigeti K, Vörös L (2009) Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J Limnol 68:385–395CrossRefGoogle Scholar
  14. González-Domenech CM, Martínez-Checa F, Quesada E, Béjar V (2009) Halomonas fontilapidosi sp. nov., a moderately halophilic, denitrifying bacterium. Int J Syst Evol Microbiol 59:1290–1296PubMedCrossRefGoogle Scholar
  15. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G, Busse HJ, Stan-Lotter H (2004) Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum. Extremophiles 8:431–439PubMedCrossRefGoogle Scholar
  16. Irimuş IA, Petrea D, Vescan I, Toma CB, Vieru I (2011) Vulnerability of touristic geomorphosites in Transylvanian saliferous areas (Romania). GeoJ Tourism Geosites 8:212–218Google Scholar
  17. Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845PubMedCrossRefGoogle Scholar
  18. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621PubMedCrossRefGoogle Scholar
  19. Kaye JZ, Márquez MC, Ventosa A, Baross JA (2004) Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54:499–511PubMedCrossRefGoogle Scholar
  20. Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragoş N, Márialigeti K, Bartha C, Vörös L (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769PubMedCrossRefGoogle Scholar
  21. Kim KK, Jin L, Yang HC, Lee ST (2007) Halomonas gomseomensis sp. nov., Halomonas janggokensis sp. nov., Halomonas salaria sp. nov. and Halomonas denitrificans sp. nov., moderately halophilic bacteria isolated from saline water. Int J Syst Evol Microbiol 57:675–681PubMedCrossRefGoogle Scholar
  22. Labrenz M, Collins MD, Lawson PA, Tindall B, Schumann P, Hirsch P (1999) Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147PubMedCrossRefGoogle Scholar
  23. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  24. Lee JC, Jeon CO, Lim JM, Lee SM, Lee JM, Song SM, Park DJ, Li WJ, Kim CJ (2005) Halomonas taeanensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 55:2027–2032PubMedCrossRefGoogle Scholar
  25. Liu X, Yao T, Kang S, Jiao N, Zeng Y, Liu Y (2010) Bacterial community of the largest oligosaline lake, Namco on the Tibetian Plateau. Geomicrobiol J 27:669–682CrossRefGoogle Scholar
  26. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799PubMedGoogle Scholar
  27. Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83PubMedCrossRefGoogle Scholar
  28. Martínez-Cánovas MJ, Quesada E, Llamas I, Béjar V (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737PubMedCrossRefGoogle Scholar
  29. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras Salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895PubMedCrossRefGoogle Scholar
  30. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617PubMedCrossRefGoogle Scholar
  31. Mutlu MB, Martinez-Garcia M, Santos F, Penal A, Guven K, Anton J (2008) Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiol Ecol 65:474–483PubMedCrossRefGoogle Scholar
  32. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700PubMedGoogle Scholar
  33. Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E (2010) Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14:339–348PubMedCrossRefGoogle Scholar
  34. Naganuma T, Hua PN, Okamoto T, Ban S, Imura S, Kanda H (2005) Depth distribution of euryhaline halophilic bacteria in Suribati Ike, a meromictic lake in East Antarctica. Polar Biol 28:964–970CrossRefGoogle Scholar
  35. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedGoogle Scholar
  36. Oren A, Rodríguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130PubMedGoogle Scholar
  37. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760PubMedCrossRefGoogle Scholar
  38. Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730PubMedGoogle Scholar
  39. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics (in press). doi: 10.1093/bioinformatics/bts252
  40. Romano I, Gambacorta A, Lama L, Nicolaus B, Giordano A (2005) Salinivibrio costicola subsp. alcaliphilus subsp. nov., a haloalkaliphilic aerobe from Campania Region (Italy). Syst Appl Microbiol 28:34–42PubMedCrossRefGoogle Scholar
  41. Romano I, Lama L, Nicolaus B, Poli A, Gambacorta A, Giordano A (2006) Halomonas alkaliphila sp. nov., a novel halotolerant alkaliphilic bacterium isolated from a salt pool in Campania (Italy). J Gen Appl Microbiol 52:339–348PubMedCrossRefGoogle Scholar
  42. Rusznyák A, Vladár P, Szabó G, Márialigeti K, Borsodi AK (2008) Phylogenetic and metabolic bacterial diversity of Phragmites australis periphyton communities in two Hungarian shallow soda lakes. Extremophiles 12:763–773PubMedCrossRefGoogle Scholar
  43. Sahay H, Singh S, Kaushik R, Saxena AK, Arora DK (2011) Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India. Biologia 66:741–747CrossRefGoogle Scholar
  44. Şerban Gh, Alexe M (2006) The capitalization of Sovata salt lakes in the context of the investments made by the „Danubius” international concern. Geographical Phorum, Geographical Studies and Environment Protection Research, University of Craiova, vol 5, pp 83–92Google Scholar
  45. Sipos R, Székely AJ, Palatinszky M, Révész S, Márialigeti K, Nikolausz M (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol Ecol 60:341–350PubMedCrossRefGoogle Scholar
  46. Sorokin DY, Tourova TP, Kuznetsov BB, Bryantseva IA, Gorlenko VM (2000) Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a-containing bacterium isolated from a soda lake. Microbiology 69:75–82CrossRefGoogle Scholar
  47. Stadnichuk IN, Yanyushin MF, Boychenko VA, Lukashev EP, Boldareva EN, Solovyev AA, Gorlenko VM (2009) Photosynthetic activity and components of the electron transport chain in the aerobic bacteriochlorophyll a-containing bacterium Roseinatronobacter thiooxidans. Microbiology 78:7–15CrossRefGoogle Scholar
  48. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (in press). doi: 10.1093/molbev/msr121
  49. Tang J, Zheng AP, Bromfield ESP, Zhu J, Li SC, Wang SQ, Deng QM, Li P (2011) 16S rRNA gene sequence analysis of halophilic and halotolerant bacteria isolated from a hypersaline pond in Sichuan, China. Ann Microbiol 61:375–381CrossRefGoogle Scholar
  50. Tindall BJ, Rossello-Mora R, Busse H-J, Ludwig W, Kämpfer P (2010) Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266PubMedCrossRefGoogle Scholar
  51. Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787PubMedGoogle Scholar
  52. Trică V (1983) Contributions to the biologic study regarding the mud formation in the therapeutical lakes from Sovata resort. Hidrobiologia, 18, Ed. Acad. RomâneGoogle Scholar
  53. Trigui H, Masmoudi S, Brochier-Armanet C, Barani A, Gregori G, Denis M, Dukan S, Maalej S (2011) Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis. Extremophiles 15:347–358PubMedCrossRefGoogle Scholar
  54. Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk HP, Hejazi MA, Hejazi MS (2011) Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiology 80:834–841CrossRefGoogle Scholar
  55. Wang YN, Cai H, Yu SL, Wang ZY, Liu J, Wu XL (2007) Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57:911–915PubMedCrossRefGoogle Scholar
  56. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetian Plateau, China. Appl Environ Microbiol 72:5478–5485PubMedCrossRefGoogle Scholar
  57. Xu XW, Wu YH, Zhou Z, Wang CS, Zhou YG, Zhang HB, Wang Y, Wu M (2007) Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624PubMedCrossRefGoogle Scholar
  58. Yeon SH, Jeong WJ, Park JS (2005) The diversity of culturable organotrophic bacteria from local solar salterns. J Microbiol 43:1–10PubMedGoogle Scholar
  59. Yoon JH, Kang SJ, Jung YT, Oh TK (2009) Psychroflexus salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 59:2404–2407PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2012

Authors and Affiliations

  • Andrea K. Borsodi
    • 1
    Email author
  • Tamás Felföldi
    • 1
  • István Máthé
    • 2
  • Vivien Bognár
    • 1
  • Mónika Knáb
    • 1
  • Gergely Krett
    • 1
  • Laura Jurecska
    • 3
  • Erika M. Tóth
    • 1
  • Károly Márialigeti
    • 1
  1. 1.Department of MicrobiologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of BioengineeringSapientia Hungarian University of TransylvaniaMiercurea CiucRomania
  3. 3.Cooperative Research Center for Environmental SciencesEötvös Loránd UniversityBudapestHungary

Personalised recommendations