Extremophiles

, Volume 16, Issue 3, pp 387–393 | Cite as

Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales

  • Camilla L. Nesbø
  • Danielle M. Bradnan
  • Abigail Adebusuyi
  • Marlena Dlutek
  • Amanda K. Petrus
  • Julia Foght
  • W. Ford Doolittle
  • Kenneth M. Noll
Original Paper

Abstract

A novel mesophilic member of the Thermotogales, strain MesG1.Ag.4.2, was isolated from sediments from Baltimore Harbor, MD, USA. The strain grew optimally at 37 °C with a doubling time of 16.5 h on xylose. Carbohydrates and proteinaceous compounds supported growth and pentoses were preferred over hexoses. The strain was strictly anaerobic and growth was slightly stimulated by thiosulfate, sulfite, and elemental sulfur. The G + C content of its genomic DNA was 45.3 mol%. Strain MesG1.Ag.4.2 and Kosmotoga olearia lipids were analyzed. Strain MesG1.Ag.4.2 contained no long-chain dicarboxylic acids and its major phospholipid was lyso-phosphatidylserine. Long-chain dicarboxylic acids were found in K. olearia and its major phospholipid was cardiolipin, a lipid not yet reported in Thermotogales species. Phylogenetic analyses of its two 16S rRNA genes placed strain MesG1.Ag.4.2 within the bacterial order Thermotogales. Based on the phylogenetic analyses and its low optimal growth temperature, it is proposed that the strain represents a novel species of a new genus within the family Thermotogaceae, order Thermotogales. The name Mesotoga prima gen. nov., sp. nov. is proposed. The type strain of M. prima is MesG1.Ag.4.2 (= DSM 24739 = ATCC BAA-2239).

Keywords

Thermotogales Mesotoga Mesophile 

References

  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296Google Scholar
  2. Ben Hania W, Ghodbane R, Posteca A, Brochier-Armanetc C, Hamdi M, Fardeau M-L, Ollivier B (2011) Cultivation of the first mesophilic representative (“mesotoga”) within the order Thermotogales. Syst Appl Microbiol 34:581–585Google Scholar
  3. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  4. Briones AM, Daugherty BJ, Angenent LT, Rausch KD, Tumbleson ME, Raskin L (2007) Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environ Microbiol 9:93–106PubMedCrossRefGoogle Scholar
  5. Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7:1104–1115PubMedCrossRefGoogle Scholar
  6. Damsté JS, Rijpstra WI, Hopmans EC, Schouten S, Balk M, Stams AJ (2007) Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch Microbiol 188:629–641PubMedCrossRefGoogle Scholar
  7. Dollhopf SL, Hashsham SA, Tiedje JM (2001) Interpreting 16S rDNA T-RFLP data: application of self-organizing maps and principal component analysis to describe community dynamics and convergence. Microb Ecol 42:495–505PubMedCrossRefGoogle Scholar
  8. Enright AM, Collins G, O’Flaherty V (2007) Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 degrees C) wastewater treatment bioreactors. Syst Appl Microbiol 30:471–482PubMedCrossRefGoogle Scholar
  9. Fernandez N, Diaz EE, Amils R, Sanz JL (2008) Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor. Microb Ecol 56:121–132PubMedCrossRefGoogle Scholar
  10. Holoman TR, Elberson MA, Cutter LA, May HD, Sowers KR (1998) Characterization of a defined 2,3,5, 6-tetrachlorobiphenyl-ortho-dechlorinating microbial community by comparative sequence analysis of genes coding for 16S rRNA. Appl Environ Microbiol 64:3359–3367PubMedGoogle Scholar
  11. Jeanthon C, Reysenbach AL, Lharidon S, Gambacorta A, Pace NR, Glenat P, Prieur D (1995) Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164:91–97PubMedCrossRefGoogle Scholar
  12. Jung S, Lowe SE, Hollingsworth RI, Zeikus JG (1993) Sarcina ventriculi synthesizes very long chain dicarboxylic acids in response to different forms of environmental stress. J Biol Chem 268:2828–2835PubMedGoogle Scholar
  13. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572PubMedCrossRefGoogle Scholar
  14. Leven L, Eriksson AR, Schnurer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693PubMedCrossRefGoogle Scholar
  15. Nesbø CL, Dlutek M, Zhaxybayeva O, Doolittle WF (2006) Evidence for existence of “mesotogas,” members of the order Thermotogales adapted to low-temperature environments. Appl Environ Microbiol 72:5061–5068PubMedCrossRefGoogle Scholar
  16. Nesbø CL, Kumaraswamy R, Dlutek M, Doolittle WF, Foght J (2010) Searching for mesophilic Thermotogales bacteria: “mesotogas” in the wild. Appl Environ Microbiol 76:4896–4900PubMedCrossRefGoogle Scholar
  17. Novik GI, Astapovich NI, Grzegorzewicz A, Gamian A (2006) Analysis of phospholipids in Bifidobacteria. Microbiol 75:29–34CrossRefGoogle Scholar
  18. Pearson A, Kraunz KS, Sessions AL, Dekas AE, Leavitt WD, Edwards KJ (2008) Quantifying microbial utilization of petroleum hydrocarbons in salt marsh sediments by using the 13C content of bacterial rRNA. Appl Environ Microbiol 74:1157–1166PubMedCrossRefGoogle Scholar
  19. Pham VD, Hnatow LL, Zhang S, Fallon RD, Jackson SC, Tomb JF, DeLong EF, Keeler SJ (2009) Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environ Microbiol 11:176–187PubMedCrossRefGoogle Scholar
  20. Rilfors L, Wieslander A, Ståhl S (1978) Lipid and protein composition of membranes of Bacillus megaterium variants in the temperature range 5 to 70 degrees C. J Bacteriol 135:1043–1052PubMedGoogle Scholar
  21. Rowe AR, Lazar BJ, Morris RM, Richardson RE (2008) Characterization of the community structure of a dechlorinating mixed culture and comparisons of gene expression in planktonic and biofloc-associated “Dehalococcoides” and Methanospirillum species. Appl Environ Microbiol 74:6709–6719Google Scholar
  22. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  23. Takahata Y, Nishijima M, Hoaki T, Maruyama T (2001) Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909PubMedCrossRefGoogle Scholar
  24. Watts JE, Wu Q, Schreier SB, May HD, Sowers KR (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol 3:710–719PubMedCrossRefGoogle Scholar
  25. White DC, Ringelberg DB (1998) Signature lipid biomarker analysis. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 255–272Google Scholar
  26. Wu Q, Sowers KR, May HD (2000) Establishment of a polychlorinated biphenyl-dechlorinating microbial consortium, specific for doubly flanked chlorines, in a defined, sediment-free medium. Appl Environ Microbiol 66:49–53PubMedCrossRefGoogle Scholar
  27. Yan T, LaPara TM, Novak PJ (2006) The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microbiol Ecol 55:248–261PubMedCrossRefGoogle Scholar
  28. Yoshida N, Takahashi N, Hiraishi A (2005) Phylogenetic characterization of a polychlorinated-dioxin-dechlorinating microbial community by use of microcosm studies. Appl Environ Microbiol 71:4325–4334PubMedCrossRefGoogle Scholar
  29. Zhao Y, Ren N, Wang A (2008) Contributions of fermentative acidogenic bacteria and sulfate-reducing bacteria to lactate degradation and sulfate reduction. Chemosphere 72:233–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • Camilla L. Nesbø
    • 1
    • 2
  • Danielle M. Bradnan
    • 3
  • Abigail Adebusuyi
    • 2
  • Marlena Dlutek
    • 4
  • Amanda K. Petrus
    • 3
  • Julia Foght
    • 2
  • W. Ford Doolittle
    • 4
  • Kenneth M. Noll
    • 3
  1. 1.Department of Biology, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
  2. 2.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  3. 3.Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUSA
  4. 4.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations