, Volume 16, Issue 2, pp 317–331 | Cite as

Effects of trace element concentrations on culturing thermophiles

  • D. R. Meyer-DombardEmail author
  • E. L. Shock
  • J. P. Amend
Original Paper


The majority of microorganisms in natural environments resist laboratory cultivation. Sometimes referred to as ‘unculturable’, many phylogenetic groups are known only by fragments of recovered DNA. As a result, the ecological significance of whole branches of the ‘tree of life’ remains a mystery; this is particularly true when regarding genetic material retrieved from extreme environments. Geochemically relevant media have been used to improve the success of culturing Archaea and Bacteria, but these efforts have focused primarily on optimizing pH, alkalinity, major ions, carbon sources, and electron acceptor–donor pairs. Here, we cultured thermophilic microorganisms from ‘Sylvan Spring’ (Yellowstone National Park, USA) on media employing different trace element solutions, including one that mimicked the source fluid of the inocula. The growth medium that best simulated trace elements found in ‘Sylvan Spring’ produced a more diverse and faster growing mixed culture than media containing highly elevated trace element concentrations. The elevated trace element medium produced fewer phylotypes and inhibited growth. Trace element concentrations appear to influence growth conditions in extreme environments. Incorporating geochemical data into cultivation attempts may improve culturing success.


Culturing Thermophiles Trace element composition Hydrothermal systems Microbial ecology 



This work was funded largely by a NASA Graduate Student Research Program (GSRP) fellowship (NGT5-50348) to D.R.M.D., also NSF-LExEN (OCE-9817730), and NASA Astrobiology Institute (Carnegie Institution) to E.L.S., and a NSF-CAREER grant (0447231) to J.P.A.


  1. Adams MWW (1995) Thermophilic Archaea: an overview. In: Robb FT, Place AR (eds) Archaea, a laboratory manual: thermophiles. Cold Spring Harbor Press, New York, pp 3–7Google Scholar
  2. Adams MWW (1998) The evolutionary significance of the metabolism of tungsten by microorganisms growing at 100C. In: Weigel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor and Francis, Philadelphia, pp 325–338Google Scholar
  3. Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Microbiol 32:270–277CrossRefGoogle Scholar
  4. Allen ET, Day AL (1935) Hot springs of the Yellowstone National Park. Waverly Press, BaltimoreGoogle Scholar
  5. Alves MP, Rainey FA, Nobre MF, da Costa MS (2003) Thermomonas hydrothermalis sp. nov., a new slightly thermophilic gamma-Proteobacterium isolated from a hot spring in central Portugal. Syst Appl Microbiol 26:70–75PubMedCrossRefGoogle Scholar
  6. Amend JP, Meyer-Dombard DR, Sheth SN, Zolotova N, Amend AC (2003a) Palaeococcus helgesonii, sp. nov., a facultatively anaerobic, hyperthermophilic Archaeon from a geothermal well on Vulcano Island, Italy. Arch Microbiol 179:394–401PubMedGoogle Scholar
  7. Amend JP, Rogers KL, Shock EL, Inguaggiato S, Gurrieri S (2003b) Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology 1:37–58CrossRefGoogle Scholar
  8. Atlas RM (2004) Handbook of microbiological media. CRC Press, Boca RatonCrossRefGoogle Scholar
  9. Ball JW, Nordstrom DK, Jenne EA, Vivit DV (1998) Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974–1975, US Geological Survey: 45Google Scholar
  10. Ball JW, Nordstrom DK, McCleskey RB, Schoonen MAA, Xu Y (2001) Water chemistry and on-site sulfur-speciation data for selected springs in Yellowstone National Park, Wyoming, 1996–1998, US Geological Survey: 41Google Scholar
  11. Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci 91:1609–1613PubMedCrossRefGoogle Scholar
  12. Baross JA (1995) Isolation, growth, and maintenance of hyperthermophiles. In: Robb FT, Place AR (eds) Archaea, a laboratory manual: thermophiles. Cold Spring Harbor Press, New York, pp 15–23Google Scholar
  13. Beeder J, Torsvik T, Lien T (1995) Thermodesulforhadbus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch Microbiol 164:331–336PubMedCrossRefGoogle Scholar
  14. Bodrossy L, Kovaks KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidising gamma-Proteobacterium. FEMS Microbiol Lett 170:335–341Google Scholar
  15. Bonch-Osmolovskaya EA, Slesarev AI, Miroshnichenko ML, Svetlichnaya TP, Alekseev VA (2001) Characterization of Desulfurococcales amylolyticus n. sp.—a new extremely thermophilic archaebacterium isolated from thermal springs of Kamchatka and Kunashir Island. Mikrobiologiya 57:94–101Google Scholar
  16. Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of K m for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741PubMedGoogle Scholar
  17. Boyd ES, Jackson RA, Encarnacion G, Zahn JA, Beard T, Leavitt WD, Pi Y, Zhang CL, Pearson A, Geesey GG (2007) Isolation, characterization, and ecology of sulfur-respiring Crenarchaea inhabiting acid-sulfate-chloride-containing geothermal springs in Yellowstone National Park. Appl Environ Microbiol 73:6669–6677PubMedCrossRefGoogle Scholar
  18. Boyd ES, Leavitt WD, Geesey GG (2009) CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. Appl Environ Microbiol 75:4289–4296PubMedCrossRefGoogle Scholar
  19. Brantley SL, Liermann L, Bau M, Wu S (2001) Uptake of trace metals and rare Earth elements from hornblende by a soil Bacterium. Geomicrobiol J 18:37–61CrossRefGoogle Scholar
  20. Brierley CL, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hotspring. Can J Microbiol 19:183–188PubMedCrossRefGoogle Scholar
  21. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkCrossRefGoogle Scholar
  22. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedGoogle Scholar
  23. Burggraf S, Huber R, Mayer T, Rossnagel P, Rachel R (2001) Isolation of hyperthermophilic Archaea previously detected by sequencing rDNA directly from the environment. In: Reysenbach AL, Voytek M, Mancinelli R (eds) Thermophiles: biodiversity ecology and evolution. Kluwer Academic/Plenum Publishers, New York, pp 93–102CrossRefGoogle Scholar
  24. Burlage RS, Atlas R, Stahl DA, Geesey G, Sayler G (1998) Techniques in microbial ecology. Oxford University Press, OxfordGoogle Scholar
  25. Burnett GW, Pelczar MJ Jr, Conn HJ (1957) Preparation of media. In: Conn HJ, Pelczar MJ Jr (eds) Manual of microbiological methods. McGraw-Hill, New York, pp 37–63Google Scholar
  26. Busse H-J, Kampfer P, Moore ERB, Nuutinen J, Tsitko IV, Denner EBM, Vauterin L, Valens M, Rossello-Mora R, Salkinoja-Salonen MS (2002) Thermomonas haemolytica gen nov., sp. nov., a gamma-Proteobacterium from kaolin slurry. Int J Syst Evol Microbiol 52:473–483PubMedGoogle Scholar
  27. Caldwell DE, Wolfaardt GM, Korber DR, Karthikeyan S, Lawrence JR, Brannan DK (2002) Cultivation of microbial consortia and communities. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology. ASM Press, Washington, DC, pp 92–100Google Scholar
  28. Castenholtz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33:476–504Google Scholar
  29. Castenholtz RW (1988a) Culturing methods for cyanobacteria. Methods Enzymol 167:68–93CrossRefGoogle Scholar
  30. Castenholtz RW (1988b) Thermophilic cyanobacteria: special problems. Methods Enzymol 167:96–100CrossRefGoogle Scholar
  31. Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine Gamma Proteobacteria. Appl Environ Microbiol 70:432–440PubMedCrossRefGoogle Scholar
  32. D’Imperio S, Lehr CR, Oduro H, Druschel GK, Kuhl M, McDermott TR (2008) Relative importance of H2 and H2S as energy sources for primary production in geothermal springs. Appl Environ Microbiol 74:5802–5808PubMedCrossRefGoogle Scholar
  33. Davis KER, Joseph SJ, Hanssen PH (2005) Effects of growth medium, inoculation size, and incubation time on culturability and isolation of soil Bacteria. Appl Environ Microbiol 71:826–834PubMedCrossRefGoogle Scholar
  34. de la Torre JR, Goebel BM, Friedmann EI, Pace NR (2003) Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 69:3858–3867PubMedCrossRefGoogle Scholar
  35. Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing Bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772PubMedCrossRefGoogle Scholar
  36. Eder W, Huber R (2002) New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6:309–318PubMedCrossRefGoogle Scholar
  37. Edwards KJ, Rogers DR, Wirsen CO, McCollom TM (2003) Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl Environ Microbiol 69:2906–2913PubMedCrossRefGoogle Scholar
  38. Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–5621PubMedCrossRefGoogle Scholar
  39. Fishbain S, Dillon JG, Gough HL, Stahl DA (2003) Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique types in the dissimilatory sulfate respiration pathway. Appl Environ Microbiol 69:3663–3667PubMedCrossRefGoogle Scholar
  40. Ghosh D, Bal B, Kashyap VK, Pal S (2003) Molecular phylogenetic exploration of Bacteria diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl Environ Microbiol 69:4332–4336PubMedCrossRefGoogle Scholar
  41. Giovannoni SJ, Mullins TD, Field KG (1995) Microbial diversity in oceanic systems: rRNA approaches to the study of unculturable microbes. Molecular ecology of aquatic microbes. I. Joint. Springer, Berlin, G 38:217–248Google Scholar
  42. Gotz D, Banta AB, Rushdi AI, Simoneit BRT, Reysenbach A-L (2002) Persephonella marina gen. nov., sp. nov., and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359PubMedCrossRefGoogle Scholar
  43. Grant CL, Pramer D (1962) Minor element composition of yeast extract. J Bacteriol 84:869–870PubMedGoogle Scholar
  44. Guirard BM, Snell EE (1981) Biochemical factors in growth. In: Gerhardt P, Murray R, Costilow R, Nester E, Wood W, Krieg N, Phillips GB (eds) Manual of methods for General bacteriology. American Society for Microbiology, Washington, DC, pp 79–111Google Scholar
  45. Hallberg KB, Lindstrom EB (1994) Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456PubMedCrossRefGoogle Scholar
  46. Handelsman J, Tiedje JM (2007) Revealing the secrets of our microbial planet. NRC Committee on metagenomics: challenges and functional applications. National Academy of Sciences, Washington, DC, 158Google Scholar
  47. Haouari O, Fardeau ML, Cayol JL, Casoit C, Elbaz-Poulichet F, Hamdi M, Joseph M, Ollivier B (2008) Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58:2529–2535PubMedCrossRefGoogle Scholar
  48. Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic Archaeum predicted by in situ RNA analysis. Nature 376:57–58PubMedCrossRefGoogle Scholar
  49. Huber R, Dyba D, Huber H, Burggraf S, Rachel R (1998a) Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic Archaea isolated after its prediction from environmentally derived 16S rRNA sequences. Int J Syst Bacteriol 48:31–38PubMedCrossRefGoogle Scholar
  50. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998b) Thermocrinis ruber gen. nov., sp. nov., a pink-filament forming hyperthermophilic Bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedGoogle Scholar
  51. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  52. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  53. Inagaki F, Takai K, Hirayama H, Yamato Y, Nealson KH, Horikoshi K (2003) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317PubMedCrossRefGoogle Scholar
  54. Johnson DB (1995) Selective solid media for isolating and enumerating acidophilic bacteria. J Microbiol Meth 23:205–218CrossRefGoogle Scholar
  55. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedCrossRefGoogle Scholar
  56. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742PubMedCrossRefGoogle Scholar
  57. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830PubMedCrossRefGoogle Scholar
  58. Kreig NR (1981) Enrichment and isolation. In: Gerhardt P, Murray R, Costilow R et al (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 112–142Google Scholar
  59. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  60. LaPaglia C, Hartzell PL (1997) Stress-induced production of biofilm in the hyperthermophilic Archeoglobus fulgidus. Appl Environ Microbiol 63:3158–3163PubMedGoogle Scholar
  61. Lloyd KG, Edgecomb VP, Molyneaux SJ, Boer S, Wirsen CO, Atkins MS, Teske A (2005) Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic Archaea. Appl Environ Microbiol 71:6383–6387PubMedCrossRefGoogle Scholar
  62. Meyer-Dombard DR (2004). Geochemical constraints on microbial diversity in Yellowstone National Park. Thesis, Doctor of Philosophy, Washington University in St. LouisGoogle Scholar
  63. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227CrossRefGoogle Scholar
  64. Nakagawa S, Shtaih Z, Banta A, Beveridge TJ, Sako Y, Reysenbach A-L (2005) Sulfurihydrogenibium yellowstonense sp. nov., and extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum, and Sulfurihydrogenibium azorense. Int J Syst Evol Microbiol 55:2263–2268PubMedCrossRefGoogle Scholar
  65. Nordstrom DK, Ball JW, McCleskey RB (2005) Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park. In: Inskeep W, McDermott TR, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, pp 71–94Google Scholar
  66. Nordstrom DK, McCleskey RB, Ball JW (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters. Appl Geochem 24:191–207CrossRefGoogle Scholar
  67. Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studies by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797PubMedCrossRefGoogle Scholar
  68. Osburn MR, Amend JP (2010) Thermogladius shockii gen. nov., sp. nov., a hyperthermophilic crenarchaeote from Yellowstone National Park, USA. Arch Microbiol 193:45–52PubMedCrossRefGoogle Scholar
  69. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–394PubMedCrossRefGoogle Scholar
  70. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  71. Rathgebar C, Yurkova N, Stackebrandt E, Beatty JT, Yurkov V (2002) Isolation of tellurite- and selenite-resistant Bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 68:4613–4622CrossRefGoogle Scholar
  72. Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–3770PubMedCrossRefGoogle Scholar
  73. Reysenbach AL, Banta AB, Boone DR, Cary SC, Luther GW (2000a) Microbial essentials at hydrothermal vents. Nature 404:835PubMedCrossRefGoogle Scholar
  74. Reysenbach AL, Longnecker K, Kirshtein J (2000b) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66(9):3798–3806PubMedCrossRefGoogle Scholar
  75. Robb FT, Place AR, Sowers KR, Schreier HJ, DasSarma S, Fleischmann EM (1995) Archaea, a laboratory manual: thermophiles. Cold Spring Harbor Press, New YorkGoogle Scholar
  76. Schleper C, Jurgens G, Jonuscheit M (2005) Genomic studies of uncultivated Archaea. Nat Rev Microbiol 3:479–488PubMedCrossRefGoogle Scholar
  77. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing Archaebacteria. Int J Syst Bacteriol 36:559–564CrossRefGoogle Scholar
  78. Shock EL, Holland M, Meyer-Dombard DR, Amend JP (2005) Geochemical sources of energy for microbial metabolism in hydrothermal ecosystems: Obsidian Pool, Yellowstone National Park, USA. In: Inskeep W, McDermott TR (eds) Geothermal biology and geochemistry in Yellowstone National Park. Thermal Biology Institute, Montana State University, pp 95–112Google Scholar
  79. Shock EL, Holland ME, Meyer-Dombard DR, Amend JP, Osburn GR, Fisher T (2010) Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta 74:4005–4043CrossRefGoogle Scholar
  80. Silver S (1997) The bacterial view of the periodic table: specific functions for all elements. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington, DC, 35:345–360Google Scholar
  81. Stetter KO, Konig H, Stackebrandt E (1983) Pyrodictium gen, nov., a new genus of submarine disc-shaped sulfur reducing Archaebacteria growing optimally at 105 C. Syst Appl Microbiol 4:535–551CrossRefGoogle Scholar
  82. Takai K, Horikoshi K (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  83. Takai K, Sako Y (1999) A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol Ecol 28:177–188CrossRefGoogle Scholar
  84. Wackett LP, Dodge AG, Ellis LBM (2004) Microbial genomics and the periodic table. Appl Environ Microbiol 70:647–655PubMedCrossRefGoogle Scholar
  85. Ward DM, Bateson MM, Ferris MJ, Kuhl M, Wieland A, Koeppel A, Cohan FM (2006) Cyanobacterial ecotypes in the microbial mat community of Mushroom Spring (Yellowstone National Park, Wyoming) as species-like units linking microbial community composition, structure, and function. Philos Trans R Soc Lond B 361:1997–2008CrossRefGoogle Scholar
  86. White DE, Hutchinson RA, Keith TEC (1988) The geology and remarkable thermal activity of Norris Geyser Basin, Yellowstone National Park, Wyoming. Washington, US Geological Survey: 84Google Scholar
  87. Wiegel J (1986) Methods for isolation and study of thermophiles. In: Brock TD (ed) Thermophiles: general molecular and applied microbiology. Wiley, New York, pp 17–37Google Scholar
  88. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMedGoogle Scholar
  89. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci 99:15681–15686PubMedCrossRefGoogle Scholar
  90. Zillig W, Stetter KO (1983) In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 10. Int J Syst Evol Microbiol 33:438–440Google Scholar

Copyright information

© Springer 2012

Authors and Affiliations

  • D. R. Meyer-Dombard
    • 1
    Email author
  • E. L. Shock
    • 2
  • J. P. Amend
    • 3
  1. 1.Department of Earth and Environmental SciencesUniversity of Illinois at ChicagoChicagoUSA
  2. 2.School of Earth and Space Exploration, and Department of Chemistry and BiochemistryArizona State UniversityTempeUSA
  3. 3.Departments of Earth Sciences and Biological SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations