Advertisement

Extremophiles

, Volume 16, Issue 2, pp 245–253 | Cite as

Thermotomaculum hydrothermale gen. nov., sp. nov., a novel heterotrophic thermophile within the phylum Acidobacteria from a deep-sea hydrothermal vent chimney in the Southern Okinawa Trough

  • Hiroshi Izumi
  • Takuro Nunoura
  • Masayuki Miyazaki
  • Sayaka Mino
  • Tomohiro Toki
  • Ken Takai
  • Yoshihiko Sako
  • Tomoo Sawabe
  • Satoshi Nakagawa
Original Paper

Abstract

A novel heterotrophic, thermophilic bacterium, designated strain AC55T, was isolated from a deep-sea hydrothermal vent chimney at the Hatoma Knoll in the Okinawa Trough, Japan. Cells of strain AC55T were non-motile, long rods (2.0- to 6.8-μm long and 0.3- to 0.6-μm wide). The strain was an obligatory anaerobic heterotroph capable of fermentative growth on complex proteinaceous substances. Elemental sulfur was reduced to hydrogen sulfide but did not stimulate growth. Growth was observed between 37 and 60°C (optimum 55°C), pH 5.5 and 8.5 (optimum pH 6.6), and in the presence of 1.5–4.5% (w/v) NaCl (optimum 2.5%, w/v). Menaquinone-7 and -8 were the major respiratory quinones. The G + C content of the genomic DNA from strain AC55T was 51.6 mol%. The 16S rRNA gene sequence analysis revealed that strain AC55T was the first cultivated representative of Acidobacteria subdivision 10. Based on the physiological and phylogenetic features of the novel isolate, the genus name Thermotomaculum gen. nov. is proposed, with Thermotomaculum hydrothermale sp. nov. as the type species. The type strain is AC55T (=JCM 17643T = DSM 24660T = NBRC 107904T).

Keywords

Acidobacteria Deep-sea hydrothermal vent Thermophile Fermentation 

Notes

Acknowledgments

We would like to thank the captain and the crew of R/V Natsushima and Hyper Dolphin for helping us to collect deep-sea hydrothermal vent samples. We are grateful to Dr. Katsuyuki Uematsu for assistance with the preparation of electron micrographs. This work was supported by the Institute for Fermentation, Osaka (IFO) and Japan Society for the Promotion of Science (JSPS).

Supplementary material

792_2011_425_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1205 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  2. Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737PubMedGoogle Scholar
  3. Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73:3113–3116PubMedCrossRefGoogle Scholar
  4. Baross JA (1995) Isolation, growth and maintenance of hyperthermophiles. In: Robb FT, Place RA (eds) Archaea; a laboratory manual, Thermophiles. Cold Spring Harbor Laboratory, New York, pp 15–23Google Scholar
  5. Brazelton WJ, Schrenk MO, Kelley DS, Baross JA (2006) Methane- and sulfur-metabolizing microbial communities dominate the lost city hydrothermal field ecosystem. Appl Environ Microbiol 72:6257–6270PubMedCrossRefGoogle Scholar
  6. Bryant DA, Garcia Costas AM, Maresca JA, Chew AG, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic Acidobacterium. Science 317:523–526PubMedCrossRefGoogle Scholar
  7. Coates JD, Ellis DJ, Gaw CV, Lovley DR (1999) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Evol Microbiol 49:1615–1622Google Scholar
  8. Dedysh SN, Kulichevskaya IS, Serkebaeva YM, Mityaeva MA, Sorokin VV, Suzina NE, Rijpstra WI, Damsté JS (2011) Bryocella elongata gen. nov., sp. nov., a novel member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.031898-0 (in press)
  9. Eichorst SA, Breznak JA, Schmidt TM (2007) Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl Environ Microbiol 73:2708–2717PubMedCrossRefGoogle Scholar
  10. Fukunaga Y, Kurahashi M, Yanagi K, Yokota A, Harayama S (2008) Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum ‘Acidobacteria’. Int J Syst Evol Microbiol 58:2597–2601PubMedCrossRefGoogle Scholar
  11. Garcia Costas AM, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2011) Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol. doi: 10.1111/j.1462-2920.2011.02592.x (in press)
  12. Hugenholtz P, Pitulle C, Hershberger KL, Pace NR (1998) Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376PubMedGoogle Scholar
  13. Imachi H, Sakai S, Hirayama H, Nakagawa S, Nunoura T, Takai K, Horikoshi K (2008) Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 58:2258–2265PubMedCrossRefGoogle Scholar
  14. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  15. Kampe H, Dziallas C, Grossart HP, Kamjunke N (2010) Similar bacterial community composition in acidic mining lakes with different pH and lake chemistry. Microb Ecol 60:618–627PubMedCrossRefGoogle Scholar
  16. Kishimoto N, Kosako Y, Tano T (1991) Acidobacterium capsulatum gen. nov., sp. nov.: an acidophilic chemoorganotrophic bacterium containing menaquinone from acidic mineral environment. Curr Microbiol 22:1–7CrossRefGoogle Scholar
  17. Kleinsteuber S, Müller FD, Chatzinotas A, Wendt-Potthoff K, Harms H (2007) Diversity and in situ quantification of Acidobacteria subdivision 1 in an acidic mining lake. FEMS Microbial Ecol 63:107–117CrossRefGoogle Scholar
  18. Koch IH, Gich F, Dunfield PF, Overmann J (2008) Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58:1114–1122PubMedCrossRefGoogle Scholar
  19. Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207CrossRefGoogle Scholar
  20. Kulichevskaya IS, Suzina NE, Liesack W, Dedysh SN (2010) Bryobacter aggregatus gen. nov., sp. nov., a peat-inhabiting, aerobic chemo-organotroph from subdivision 3 of the Acidobacteria. Int J Syst Evol Microbiol 60:301–306PubMedCrossRefGoogle Scholar
  21. Kulichevskaya IS, Kostina LA, Valásková V, Rijpstra WI, Damsté JS, Boer W, Dedysh SN (2011) Acidicapsa borealis gen. nov., sp. nov. and A. ligni sp. nov., two novel subdivision 1 Acidobacteria from sphagnum peat and decaying wood. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.034819-0 (in press)
  22. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Techniques in Bacterial Systematics. Chichester, Wiley, pp 115–175Google Scholar
  23. Liesack W, Bak F, Kreft J, Stackebrandt E (1994) Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90PubMedGoogle Scholar
  24. López-García P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976PubMedCrossRefGoogle Scholar
  25. Ludwig W, Bauer SH, Bauer M, Held I, Kirchhof G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer KH (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190PubMedCrossRefGoogle Scholar
  26. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  27. Männistö MK, Rawat S, Starovoytov V, Häggblom MM (2010) Terriglobus saanensis sp. nov., a novel Acidobacterium isolated from tundra soil of Northern Finland. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.026005-0 (in press)
  28. Meisinger DB, Zimmermann J, Ludwig W, Schleifer KH, Wanner G, Schmid M, Bennett PC, Engel AS, Lee NM (2007) In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically based cave ecosystem (Lower Kane Cave, WY, USA). Environ Microbiol 9:1523–1534PubMedCrossRefGoogle Scholar
  29. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  30. Nakagawa S, Takai K (2006) Methods for the isolation of thermophiles from deep-sea hydrothermal environments. Method Microbiol 35:55–91CrossRefGoogle Scholar
  31. Nakagawa S, Takai K (2008) Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14PubMedCrossRefGoogle Scholar
  32. Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869PubMedCrossRefGoogle Scholar
  33. Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ε-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:925–933PubMedCrossRefGoogle Scholar
  34. Nunoura T, Takai K (2009) Comparison of microbial communities associated with phase-separation-induced hydrothermal fluids at the Yonaguni Knoll IV hydrothermal field, the Southern Okinawa Trough. FEMS Microbiol Ecol 67:351–370PubMedCrossRefGoogle Scholar
  35. Nunoura T, Oida H, Miyazaki M, Suzuki Y, Takai K, Horikoshi K (2007) Desulfothermus okinawensis sp. nov., a thermophilic and heterotrophic sulfate-reducing bacterium isolated from a deep-sea hydrothermal field. Int J Syst Evol Microbiol 57:2360–2364PubMedCrossRefGoogle Scholar
  36. Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuchi T, Kazama H, Hosoi-Tanabe S, Nakamura K, Kinoshita M, Hirayama H, Inagaki F, Tsunogai U, Ishibashi J, Takai K (2010) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Appl Environ Microbiol 76:1198–1211PubMedCrossRefGoogle Scholar
  37. Pankratov TA, Dedysh SN (2010) Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60:2951–2959PubMedCrossRefGoogle Scholar
  38. Pankratov TA, Kirsanova LA, Kaparullina EN, Kevbrin VV, Dedysh N (2011) Telmatobacter bradus gen. nov., sp. nov., a cellulolytic facultative anaerobe from subdivision 1 of the Acidobacteria and emended description of Acidobacterium capsulatum Kishimoto et al. 1991. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.029629-0 (in press)
  39. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  40. Reysenbach A-L, Liu Y, Banta AB, Beveridge TJ, Kirshtein JD, Schouten S, Tivey MK, Von Damm KL, Voytek MA (2006) A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents. Nature 442:444–447PubMedCrossRefGoogle Scholar
  41. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666PubMedCrossRefGoogle Scholar
  42. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  43. Sako Y, Takai K, Ishida Y, Uchida A, Katayama Y (1996) Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104PubMedCrossRefGoogle Scholar
  44. Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  45. Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–656PubMedCrossRefGoogle Scholar
  46. Sievert SM, Kuever J, Muyzer G (2000) Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109PubMedCrossRefGoogle Scholar
  47. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041PubMedCrossRefGoogle Scholar
  48. Swofford DL (2000) PAUP*. Phylogenetic analysis using parsimony (and other methods), version 4. Sinauer Associates, SunderlandGoogle Scholar
  49. Takai K, Nakagawa S, Reysenbach A-L, Hoek J (2006) Microbial ecology of mid-ocean ridges and back-arc basins. In Back-Arc spreading systems: geological, biological, chemical, geophysical interactions. In: Christie DM, Fisher CR, Sang-Mook L, Givens S (eds) Geophysical Monograph Series 166. American Geophysical Union, Washington, DC, pp 185–213Google Scholar
  50. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  51. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance lipid chromatography. J Appl Bacteriol 54:31–36CrossRefGoogle Scholar
  52. Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056PubMedCrossRefGoogle Scholar
  53. Zillig W, Holz I, Janekovic D, Klenk HP, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptide. J Bacteriol 172:3959–3965PubMedGoogle Scholar
  54. Zimmermann J, Gonzalez JM, Saiz-Jimenez C (2005) Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira cave using 23S rRNA sequence analyses. Geomicrobiol J 22:379–388CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Hiroshi Izumi
    • 1
  • Takuro Nunoura
    • 2
  • Masayuki Miyazaki
    • 2
  • Sayaka Mino
    • 1
  • Tomohiro Toki
    • 3
  • Ken Takai
    • 2
  • Yoshihiko Sako
    • 4
  • Tomoo Sawabe
    • 1
  • Satoshi Nakagawa
    • 1
    • 2
  1. 1.Laboratory of Microbiology, Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  2. 2.Subsurface Geobiology Advanced Research (SUGAR) Project, Institute of BiogeosciencesJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  3. 3.Faculty of ScienceUniversity of the RyukyusNishiharaJapan
  4. 4.Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations