, Volume 16, Issue 1, pp 1–19 | Cite as

Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications

  • Archana Sharma
  • Yutaka Kawarabayasi
  • T. SatyanarayanaEmail author


Acidophiles are ecologically and economically important group of microorganisms, which thrive in acidic natural (solfataric fields, sulfuric pools) as well as artificial man-made (areas associated with human activities such as mining of coal and metal ores) environments. They possess networked cellular adaptations to regulate pH inside the cell. Several extracellular enzymes from acidophiles are known to be functional at much lower pH than the cytoplasmic pH. Enzymes like amylases, proteases, ligases, cellulases, xylanases, α-glucosidases, endoglucanases, and esterases stable at low pH are known from various acidophilic microbes. The possibility of improving them by genetic engineering and directed evolution will further boost their industrial applications. Besides biocatalysts, other biomolecules such as plasmids, rusticynin, and maltose-binding protein have also been reported from acidophiles. Some strategies for circumventing the problems encountered in expressing genes encoding proteins from extreme acidophiles have been suggested. The investigations on the analysis of crystal structures of some acidophilic proteins have thrown light on their acid stability. Attempts are being made to use thermoacidophilic microbes for biofuel production from lignocellulosic biomass. The enzymes from acidophiles are mainly used in polymer degradation.


Acidophiles Biocatalysts Acid stable Extremophiles 


  1. Albers SV, Driessen AJ (2007) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145–149CrossRefGoogle Scholar
  2. Alikhajeh J, Khajeh K, Naderi-Manesh M, Ranjbar B, Sajedi RH, Naderi-Manesh H (2007) Kinetic analysis, structural studies and prediction of pKa values of Bacillus KR-8104 α-amylase: the determinants of pH-activity profile. Enzym Microbiol Technol 41:337–345CrossRefGoogle Scholar
  3. Arpigny JL, Jaeger K-E (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183PubMedCrossRefGoogle Scholar
  4. Asghari SM, Khajeh K, Moradian F, Ranjbar B, Naderi-Manesh H (2004) Acid-induced conformational changes in Bacillus amyloliqefaciens α-amylase: appearance of a molten globule like state. Enzym Microb Technol 35:51–57CrossRefGoogle Scholar
  5. Asoodeh A, Chamani J, Lagzian M (2010) A novel thermostable, acidophilic α-amylase from a new thermophilic “Bacillus sp. Ferdowsicous” isolated from Ferdows hot mineral spring in Iran: purification and biochemical characterization. Int J Biol Macromol 46:289–297PubMedCrossRefGoogle Scholar
  6. Auernik KS, Cooper CR, Kelly RM (2008a) Life in hot acid: pathway analysis in extremely thermoacidophilic archaea. Curr Opin Biotechnol 19:445–453PubMedCrossRefGoogle Scholar
  7. Auernik KS, Maezato Y, Blum PH, Kelly RM (2008b) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692PubMedCrossRefGoogle Scholar
  8. Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171PubMedCrossRefGoogle Scholar
  9. Batrakov SG, Pivovarova TA, Esipov SE, Sheichenko VI, Karavaiko GI (2002) Beta-d-glycopyranosyl caldarchaetidylglycerol is the main lipid of the acidophilic, mesophilic, ferrous iron-oxidizing archaeon Ferroplasm acidiphilum. Biochim Biophys Acta Mol Cell Biol Lipids 1581:29–35Google Scholar
  10. Bertoldo C, Dock C, Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng Life Sci 4:521–531CrossRefGoogle Scholar
  11. Bhattacharyya S, Chakrabarty BK, Das A, Jundu P, Banerjee PC (1990) Acidiphilium symbioticum sp. nov., an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines. Can J Microbiol 37:78–85CrossRefGoogle Scholar
  12. Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 11:286–290CrossRefGoogle Scholar
  13. Blake RC, White KJ, Shute EA (1991) Effect of divers anions on the electron-transfer reaction between iron and rusticyanin from Thiobacillus ferrooxidans. Biochemistry 30:9443–9449PubMedCrossRefGoogle Scholar
  14. Blanco A, Diaz P, Martinez J, Vidal T, Torres AL, Pastor FI (1998) Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterization of the enzyme performance in paper manufacture from cereal straw. Appl Microbiol Biotechnol 50:48–54PubMedCrossRefGoogle Scholar
  15. Brierley CL, Brierley JA (1973) A chemoautotropic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 19:183–188PubMedCrossRefGoogle Scholar
  16. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulphur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68PubMedCrossRefGoogle Scholar
  17. Bryant RD, McGoarty KM, Costerton JW, Laishley EJ (1983) Isolation and characterisation of a new acidophilic Thiobacillus strain (T. albertis). Can J Microbiol 29:1159–1170Google Scholar
  18. Buonocore V, Caporale C, Derosa M, Gambacorta A (1976) Stable, inducible, thermoacidophilic α-amylase from Bacillus acidocaldarius. J Bacteriol 128:515–521PubMedGoogle Scholar
  19. Chen L, Brugger K, Skovgaard M, Redder P, Qunxin S, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garretti RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999PubMedCrossRefGoogle Scholar
  20. Clark DA, Norris PR (1996) Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790CrossRefGoogle Scholar
  21. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23PubMedCrossRefGoogle Scholar
  22. Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256PubMedCrossRefGoogle Scholar
  23. Crossman L, Holden M, Pain A, Parkhill J (2004) Genomes beyond compare. Nat Rev Microbiol 2:616–617PubMedCrossRefGoogle Scholar
  24. Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic, thermophilic spore forming bacterium. J Gen Microbiol 67:9–15Google Scholar
  25. Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170:1416–1418PubMedCrossRefGoogle Scholar
  26. Davies DR (1990) The structure and function of the aspartic proteinases. Ann Rev Biophys Chem 19:189–215CrossRefGoogle Scholar
  27. De Pascale D, Sasso MP, Lernia ID, Lazzaro AD, Furia A, Farina MC, Rossi M, De rosa M (2001) Recombinant thermophilic enzymes from trehalose and trehalosyl dextrins production. J Mol Catal B Enzym 11:777–786CrossRefGoogle Scholar
  28. Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416PubMedCrossRefGoogle Scholar
  29. Dock C, Hess M, Anthranikian G (2008) A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic euryarchaeon Thermoplasma acidophilum. Appl Microbiol Biotechnol 78:105–114PubMedCrossRefGoogle Scholar
  30. Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillus acidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270:3593–3602PubMedCrossRefGoogle Scholar
  31. Ettema TJ, Brinkman AB, Lamers PP, Kornet NG, de Vos WM, Vander Oost J (2006) Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper responsive regulator in Sulfolobus solfataricus P2. Microbiology 152:1969–1979PubMedCrossRefGoogle Scholar
  32. Fang T-Y, Huang X-G, Shih T-Y, Tseng W-C (2004) Characterization of trehalosyl dextrin forming enzyme from thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles 8:335–343PubMedCrossRefGoogle Scholar
  33. Ferrer M, Golyshina OV, Beloqui A, Bottger LH, Andreu JM, Polaina J, Lacey ALD, Trautwein AX, Timmis KN, Golyshin PN (2008) A purple acidophilic di-ferric DNA ligase from Ferroplasma. Proc Natl Acad Sci USA 105:8878–8883PubMedCrossRefGoogle Scholar
  34. Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1996) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566Google Scholar
  35. Fusek M, Lin XL, Tang J (1990) Enzymatic properties of thermopsin. J Biol Chem 265:1496–1501PubMedGoogle Scholar
  36. Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096PubMedCrossRefGoogle Scholar
  37. Gaffney PJ, Edgell TA, Dawson PA, Ford AW, Stocker E (1996) A pig collagen peptide fraction. A unique material for maintaining biological activity during lyophilization and during storage in the liquid state. J Pharm Pharmacol 48:896–898PubMedCrossRefGoogle Scholar
  38. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65PubMedGoogle Scholar
  39. Golovacheva RS, Golyshina OV, Karavaiko GI, Dorofeev AG, Cheruykh NA (1992) The new iron-oxidizing bacterium Leptospirillum thermoferrooxidans sp. nov. Mikrobiologiya 61:1056–1065Google Scholar
  40. Golovacheva RS, Karavaiko GI (1978) A new genus of thermophilic spore-forming bacteria, Sulfobacillus. Mikrobiologiya 47:815–822Google Scholar
  41. Golyshina OV, Golyshina NP, Timmis NK, Ferrer M (2006) The pH optimum anomaly of intracellular enzymes of Ferroplasma acidiphilum. Environ Microbiol 8:416–425PubMedCrossRefGoogle Scholar
  42. Golyshina OV, Pivovarova TA, Karavaiko GI, Moore ERB, Abracham WR, Luensdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic autotrophic, ferrous-iron oxidizing, cell wall lacking, mesophilic member of the Ferroplasmaceae fam. Nov., comprising distinct lineage of Archaea. Int J Syst Evol Microbiol 50:997–1006PubMedCrossRefGoogle Scholar
  43. Grogan D, Palm P, Zillig W (1990) Isolate B12 which harbors a virus-like element represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae new species. Arch Mikrobiol 154:594–599Google Scholar
  44. Guay R, Silver M (1975) Thiobacillus acidophilus sp. nov., isolation and some physiological characteristics. Can J Microbiol 21:281–288PubMedCrossRefGoogle Scholar
  45. Gueguen Y, Rolland JL, Schroeck S, Flament D, Defretin S, Saniez MH, Dietrich J (2001) Characterization of the maltooligosyl trehalose synthese from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 194:201–206PubMedCrossRefGoogle Scholar
  46. Han D, Krauss G (2009) Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett 583:771–776PubMedCrossRefGoogle Scholar
  47. Harrison AP (1981) Acidiphilium cryptum gen. nov., sp. nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31:327–332CrossRefGoogle Scholar
  48. Harrison AP (1983) Genomic and physiological comparisons between heterotrophic thiobacilli and Acidiphilium cryptum, Thiobacillus versutus, sp. nov., and Thiobacillus acidophilus nom. rev. Int J Syst Bacteriol 33:211–217CrossRefGoogle Scholar
  49. Hess M (2008) Thermoacidophilic proteins for biofuel production. Trends Microbiol 16:414–419PubMedCrossRefGoogle Scholar
  50. Hirata A, Adachi M, Sekine A, Kang YN, Utsumi S, Mikami B (2004) Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum. J Biol Chem 279:7287–7295PubMedCrossRefGoogle Scholar
  51. Honda S (1998) Dietary use of collagen and collagen peptides for cosmetics. Food Style 21:54–60Google Scholar
  52. Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, RenY Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26PubMedCrossRefGoogle Scholar
  53. Hovarth P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefGoogle Scholar
  54. Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-b-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588PubMedCrossRefGoogle Scholar
  55. Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacido-philic archaebacteria. Syst Appl Microbiol 12:38–47Google Scholar
  56. Huber H, Stetter KO (1989) Thiobacillus prosperus sp. nov., represents of new group of acid tolerant metal-mobilizing bacteria isolated from a marine geothermal field. Arch Mikrobiol 151:479–485Google Scholar
  57. Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal mobilizers. Syst Appl Microbiol 14:372–378Google Scholar
  58. Inagaki K, Nakahira K, Mukai K, Tamura T, Tanaka H (1998) Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci Biotechnol Biochem 62:1061–1067PubMedCrossRefGoogle Scholar
  59. Itoh T, Yoshikawa N, Takashina T (2007) Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Syst Evol Microbiol 57:2557–2561PubMedCrossRefGoogle Scholar
  60. Jones A, Lamsa M, Frandsen TP, Spendler T, Harris P, Sloma A, Xu F, Nielson JB, Cherry JR (2008) Directed evolution of a maltogenic alpha-amylase from Bacillus sp. TS-25. J Biotechnol 134:325–333PubMedCrossRefGoogle Scholar
  61. Karavaiko GI, Golyshina OV, Troitskii AV, Valiehoroman KM, Golovacheva RS, Pivovarova TA (1994) Sulfurococcus yellowstonii sp. nov., a new species of ironoxidizing and sulphur-oxidizing thermoacidophilic archaebacteria. Mikrobiologiya 63:379–387Google Scholar
  62. Katkocin DM (1985) Thermostable glucoamylase and method for its production. US Patent No. 4,536,477Google Scholar
  63. Kato M (1999) Trehalose production with a new enzymatic system from Sulfolobus solfataricus KM1. J Mol Catal B Enzym 6:223–233CrossRefGoogle Scholar
  64. Kato M, Miura Y, Kettoku M, Komeda T, Iwamatsu A, Kobayashi K (1996a) Reaction mechanism of a new glycosyltrehalose hydrolyzing enzyme isolated from the hyperthermophilic archaeon, Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60:925–928CrossRefGoogle Scholar
  65. Kato M, Miura Y, Kettoku M, Shindo K, Iwamatsu A, Kobayashi K (1996b) Purification and characterization of new trehalose producing enzymes isolated from the hyperthermophilic archaean, Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60:546–550PubMedCrossRefGoogle Scholar
  66. Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic Crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140PubMedCrossRefGoogle Scholar
  67. Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yanazaki M, Kanehori K, Kawamotoi T, Nunoshiba T, Yamamoto Y, Aramaki H, Makino K, Suzuki M (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci USA 97:14257–14262PubMedCrossRefGoogle Scholar
  68. Keeling PJ, Klenk H-P, Singh RK, Feeley O, Schleper C, Zillig W, Doolittle WF, Sensen WC (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144PubMedCrossRefGoogle Scholar
  69. Keeling PJ, Klenk HP, Singh RK, Schenk ME, Sensen WC, Zillig W, Doolittle WF (1998) Sulfolobus islandicus plasmids pRN1 and pRN2 share distant but common evolutionary ancestry. Extremophiles 2:391–393PubMedCrossRefGoogle Scholar
  70. Kim S, Lee SB (2006) Rare codon clusters at 5′-end influence heterologous expression of archaeal gene in Escherichia coli. Protein Expr Purif 50:49–57PubMedCrossRefGoogle Scholar
  71. Kim M, Park J, Kim Y, Lee H, Nyawira R, Shin H, Park C, Yoo S, Kim Y, Moon T, Park K (2004) Properties of novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70:3933–3940PubMedCrossRefGoogle Scholar
  72. Kishimoto N, Inagaki K, Sugio T, Tano T (1991) Purification and properties of an acidic β-glucosidase from Acidobacterium capsulatum. J Fermen Bioeng 71:318–321CrossRefGoogle Scholar
  73. Kishimoto N, Kosako Y, Eakao N, Tano T, Hiraishi A (1995) Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 18:85–91CrossRefGoogle Scholar
  74. Kletzin A, Lieke A, Urich T, Charlebois RL, Sensen CW (1999) Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics 152:1307–1314PubMedGoogle Scholar
  75. Kocabayak S, Ozel H (2007) An extracellular Pepstatin insensitive acid protease produced by Thermoplasma volcanium. Biores Technol 98:112–117CrossRefGoogle Scholar
  76. Koma D, Sawai T, Harayama S, Kino K (2006) Overexpression of the genes from thermophiles in Escherichia coli at high-temperature cultivation. Appl Microbiol Biotechnol 73:172–180PubMedCrossRefGoogle Scholar
  77. Kurosawa N, Itoh YH, Iwai T, Sugai A, Uda I, Kimura N, Horiuchi T, Itoh T (1998) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456Google Scholar
  78. Kurosawa N, Fukuda K, Itoh YH, Horiuchi T (2000) Partial purification and characterization of thermostable acid phosphatase from thermoacidophilic archaeon Sulfolobus acidocaldarius. Curr Microbiol 40:57–60PubMedCrossRefGoogle Scholar
  79. Limauro DR, Cannio G, Fiorentino MR, Bartolucci S (2001) Identification and molecular characterization of an endoglucanase gene, CelS, from the extremely thermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:213–219PubMedCrossRefGoogle Scholar
  80. Liu XD, Xu Y (2008) A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Biores Technol 99:4315–4320CrossRefGoogle Scholar
  81. Lobos JH, Chisholm TE, Bopp LH, Holmes DS (1986) Acidiphilium organovorum sp. nov., an acidophilic heterotroph isolated from a Thiobacillus ferrooxidans culture. Int J Syst Bacteriol 36:139–144CrossRefGoogle Scholar
  82. Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004) Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411–419PubMedCrossRefGoogle Scholar
  83. Manabe F, Itoh YH, Shoun H, Wakagi T (2009) Membrane-bound acid pyrophosphatase from Sulfolobus tokodaii, a thermoacidophilic archaeon: heterologous expression of the gene and characterization of the product. Extremophiles 13:859–865PubMedCrossRefGoogle Scholar
  84. Manabe F, Shoun H, Wakagi T (2011) Conserved residues in membrane-bound acid pyrophosphatase from Sulfolobus tokodaii, a thermoacidophilic archaeon. Extremophiles 15:359–364PubMedCrossRefGoogle Scholar
  85. Marciniszyn J, Hartsuck JA, Tang J (1976) Mode of inhibition of acid proteases by pepstatin. J Biol Chem 251:7088–7094PubMedGoogle Scholar
  86. Markosyan GE (1972) A new iron-oxidizing bacterium Leptospirillum ferrooxidans gen. nov., sp. nov. Biol J Armenia 25:26–29Google Scholar
  87. Markosyan GE (1973) A new mixotrophic sulphur bacterium developing in acid media, Thiobacillus organoparus sp. Dokl Akad Nauk SSSR 211:1205–1208Google Scholar
  88. Matin A (1999) pH homeostasis in acidophiles. Novartis Found Sym 221:152–163Google Scholar
  89. Matzke J, Herrmann A, Schneider E, Bakker EP (2000) Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes. FEMS Microbiol Lett 183:55–61PubMedCrossRefGoogle Scholar
  90. Matzke J, Schwermann B, Baker EP (1997) Acidostable and acidophilic proteins: the example of the α- amylase from Alicyclobacillus acidocaldarius. Comp Biochem Physiol 118A:475–479CrossRefGoogle Scholar
  91. Maurelli L, Giovane A, Esposito A, Moracci M, Fiume I, Rossi M, Morana A (2008) Evidence that the xylanase activity from Sulfolobus solfataricus Oα is encoded by the endoglucanase precursor gene (sso1354) and characterization of the associated cellulase activity. Extremophiles 12:689–700PubMedCrossRefGoogle Scholar
  92. Miura Y, Kettoku M, Kato M, Kobayashi K, Kondo K (1999) High level production of thermostable alpha-amylase from Sulfolobus solfataricus in high-cell density culture of the food yeast Candida utilis. J Mol Microbiol Biotechnol 1:129–134PubMedGoogle Scholar
  93. Murao S, Okhuni K, Naganao M (1988) A novel thermostable S-PI (pepstatin Ac)—insensitive acid proteinase from thermophilic Bacillus novo sp. strain Mn-32. Agric Biol Chem 52:1029–1031Google Scholar
  94. Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996a) Purification and characterization of thermostable maltooligosyl trehalose synthese from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem 60:263–266PubMedCrossRefGoogle Scholar
  95. Nakada T, Ikegami S, Chaen H, Kubota M, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996b) Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci Biotechnol Biochem 60:267–270PubMedCrossRefGoogle Scholar
  96. Nakayama T, Tsuruoka N, Akai M, Nishino T (2000) Thermostable collagenolytic activity of a novel thermophilic isolate, Bacillus sp. Strain NTAP-1. J Biosci Bioeng 89:612–614PubMedCrossRefGoogle Scholar
  97. Neilsen JE, Borchert TV, Vriend G (2001) The determinants of α-amylase pH-activity profiles. Protein Eng 14:505–512CrossRefGoogle Scholar
  98. Norris PR (1990) Microbial Mineral Recovery. In: Ehrlich HL, Brierley CL (eds) Acidophilic bacteria and their activity in mineral sulfide oxidation. McGraw-Hill, New York, pp 1–27Google Scholar
  99. Norris PR, Clark DA, Owen JP, Waterhouse S (1996) Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulfide-oxidizing bacteria. Microbiology 142:775–783Google Scholar
  100. Nouailler M, Bruscella P, Lojou E, Lebrun R, Bonnyfoy V, Guerlesquin F (2006) Structural analysis of the HiPIP from the acidophilic bacteria: Acidithiobacillus ferrooxidans. Extremophiles 10:191–198PubMedCrossRefGoogle Scholar
  101. Oda K, Nakazima T, Terashita T, Suziki KA, Murao S (1987a) Purification and properties of an S-PI (Pepstatin Ac) insensitive carboxyl proteinase from a Xanthomonas sp. Bacterium. Agric Biol Chem 51:3073–3080CrossRefGoogle Scholar
  102. Oda K, Sugitani M, Fukuhara K, Murao S (1987b) Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram negative bacterium. Biochim Biophys Acta 923:463–469PubMedCrossRefGoogle Scholar
  103. Page-Sharp M, Behm CA, Smith GD (1999) Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cynobacterial Scytonema species isolated from desert soil. Biochim Biophys Acta 1472:519–528PubMedCrossRefGoogle Scholar
  104. Prescott M, Peek K, Daniel RM (1995) Characterization of a thermostable pepstatin-insensitive acid proteinase from a Bacillus sp. Int J Biochem 27:729–739CrossRefGoogle Scholar
  105. Rajagopalan TG, Stein WH, Moore S (1966) The inactivation of pepsin by diazoacetylnorleucine methyl ester. J Biol Chem 241:4295–4297PubMedGoogle Scholar
  106. Ren-Long J, Wu J, Chaw S-M, Tsai C-W, Tsen S-D (1999) A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 49:1809–1816Google Scholar
  107. Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek AP, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance and results of multiple safety studies. Food Chem Toxicol 40:871–898PubMedCrossRefGoogle Scholar
  108. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha amylase. J Biol Chem 277:26501–26507PubMedCrossRefGoogle Scholar
  109. Rolfsmeier M, Haseltine C, Bini E, Clark A, Blum P (1998) Molecular characterization of the α-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 180:1287–1295PubMedGoogle Scholar
  110. Romonsellez F, Orell A, Jerez CA (2006) Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:59–66CrossRefGoogle Scholar
  111. Rubin-Pitel SB, Zhao H (2006) Recent advances in biocatalysis by directed enzyme evolution. Comb Chem High Throughput Screen 9:247–257PubMedCrossRefGoogle Scholar
  112. Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes WH, Freishman D, Stocker S, Lupas NA, Baumeister W (2000) The genome sequence of thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513PubMedCrossRefGoogle Scholar
  113. Sajedi RH, Naderi-Mahesh H, Khajeh K, Ahmadvand R, Ranjbar BA, Asoodeh A, Moradian F (2005) A calcium independent α-amylase that is active and stable at low pH from the Bacillus sp. KR-8104. Enzym Microbiol Technol 36:666–671CrossRefGoogle Scholar
  114. Schafer K, Magnusson U, Scheffel AS, Sandgren MOJ, Diederichs K, Welte W, Hulsmann A, Schneider E, Mowbray SL (2004) X-ray structures of the maltose maltodextrin binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acidostability of the proteins. J Mol Biol 335:261–274PubMedCrossRefGoogle Scholar
  115. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurence and characterizaton of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437PubMedCrossRefGoogle Scholar
  116. Schelert J, Drozda M, Dixit V, Dillman A, Blum P (2006) Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus. J Bacteriol 188:7141–7150PubMedCrossRefGoogle Scholar
  117. Schepers B, Thiemann V, Antranikian G (2006) Characterization of a novel glucoamylase from the thermoacidophilic archaeon Picrophilus torridus heterologously expressed in E. coli. Eng Life Sci 6:311–317CrossRefGoogle Scholar
  118. Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U (1995) Picrophilus gen. nov., fam. Nov. a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177:7050–7059PubMedGoogle Scholar
  119. Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP (1994) Purification, properties and structural aspects of the thermoacidophilic α-amylase from Alicyclobacillus acidocaldarius ATCC 27009. Insight into acidostability of proteins. Eur J Biochem 226:981–991PubMedCrossRefGoogle Scholar
  120. Segerer A, Langworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10:161–171Google Scholar
  121. Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidanus infermus gen. nov., sp. nov., and Acidanus brierleyi comb. nov.: facultatively aerobic, extremely acidophlic thermophilic sulphur-metabolizing archaebacteria. Int J Syst Bacteriol 36:559–564CrossRefGoogle Scholar
  122. Segerer A, Stetter KO, Klink F (1985) Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313:787–789PubMedCrossRefGoogle Scholar
  123. Segerer A, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaea of the order Sulfolobales. Int J Syst Bacteriol 41:495CrossRefGoogle Scholar
  124. Sen S, Dasu VV, Mandal B (2007) Development in directed evolution for improving enzyme functions. Appl Biochem Biotechnol 143:212–223PubMedCrossRefGoogle Scholar
  125. Serour E, Antranikian G (2002) Novel thermoactive glucamylases from the thermoacidophilic Archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leewenhock 81:73–83CrossRefGoogle Scholar
  126. Sharma A, Satyanarayana T (2010) High maltose-forming, Ca2+-independent and acid stable α-amylase from a novel acidophilic bacterium Bacillus acidicola TSAS1. Biotechnol Lett 32:1503–1507PubMedCrossRefGoogle Scholar
  127. Sharma A, Satyanarayana T (2011) Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola. J Biosci Bioeng 111:550–553PubMedCrossRefGoogle Scholar
  128. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Vander OJ (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedCrossRefGoogle Scholar
  129. Tang J (1971) Specific and irreversible inactivation of pepsin by substrate-like epoxides. J Biol Chem 246:4510–4517PubMedGoogle Scholar
  130. Toogood SH, Prescott M, Daniel MR (1995) A pepstatin-insensitive aspartic proteinase from a thermophilic Bacillus sp. Biochem J 307:783–789PubMedGoogle Scholar
  131. Tsuruoka N, Nakayama T, Ashida M, Hemmi H, Nakao M, Minakata H, Oyama H, Oda K, Nishino T (2003) Collagenolytic serine-carboxyl proteinase from Alicyclobacillus sendaiensis strain NTAP-1: purification, characterization, gene cloning and heterologous expression. Appl Environ Microbiol 69:162–169PubMedCrossRefGoogle Scholar
  132. Verhaert RM, Beekwilder J, Olsthoorn R, Van DJ, Quax WJ (2002) Phage display selects for amylases with improved low pH starch binding. J Biotechnol 96:103–118PubMedCrossRefGoogle Scholar
  133. Vossenberg JL, Driessen AJ, Zillig W, Konings WN (1998) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74PubMedCrossRefGoogle Scholar
  134. Wakao N, Hiraishi A, Nagasawa N, Matsuura T, Matsumoto T, Sakurai Y, Shiota H (1994) Acidiphilium multivorum sp. nov., an acidophilic chemoorganotrophic bacterium from pyritic acid mine drainage. J Gen Appl Microbiol 40:143–159CrossRefGoogle Scholar
  135. Wichlacz PL, Unz RF, Langworthy TA (1986) Acidiphilium angustum sp. nov., Acidiphilium facilis sp. nov., Acidiphilium rubrum sp. nov. Acidophilic heterotrophic bacteria isolated from acidic coal mine drainage. Int J Syst Bacteriol 36:197–201CrossRefGoogle Scholar
  136. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K (1992) Comparative sequence analyses on the 16S ribosomal-RNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269PubMedCrossRefGoogle Scholar
  137. Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488PubMedCrossRefGoogle Scholar
  138. Xiang X, Dong X, Huang L (2003) Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeaon isolated from a hot spring in Tengchong, China. Extremophiles 7:493–498PubMedCrossRefGoogle Scholar
  139. Yamashiro K, Yokobori S, Oshima TE, Yamagishi A (2006) Structural analysis of the plasmid pTA1 isolated from the thermoacidophilic archaeon Thermoplasma acidophilum. Extremophiles 10:327–335PubMedCrossRefGoogle Scholar
  140. Yasuda M, Yamagishi A, Oshima T (1995) The plasmids found in isolates of the acidothermophilic archaebacterium Thermoplasma acidophilum. FEMS Microbiol Lett 128:157–162CrossRefGoogle Scholar
  141. Zhao Q, Liu H, Zhang Y, Zhang Y (2010) Engineering of protease-resistant phytase from Penicillium sp.: high thermal stability, low optimal temperature and pH. J Biosci Bioeng 110:638–645PubMedCrossRefGoogle Scholar
  142. Zillig W, Boeck A (1987) In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 23. Int J Syst Bacteriol 37:179–180CrossRefGoogle Scholar
  143. Zillig W, Stetter KO, Wunderl S, Schultz W, Priess H, Scholz I (1980) In Validation of the publication of new names and new combinations previously effectively published outside the IJSB. List No. 5. Int J Syst Bacteriol 30:676–677CrossRefGoogle Scholar
  144. Zillig W, Yeats S, Holz I, Boeck A, Rettenberger M, Gropp F, Simon G (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulphur. Syst Appl Microbiol 8:197–203Google Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Archana Sharma
    • 1
  • Yutaka Kawarabayasi
    • 2
  • T. Satyanarayana
    • 1
    Email author
  1. 1.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia
  2. 2.New Energy and Industrial Technology Development Organization (NEDO)KawasakiJapan

Personalised recommendations