, 15:697 | Cite as

Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus

  • Tomáš ŘezankaEmail author
  • Lucie Siristova
  • Karel Sigler
Original Paper


Novel rhamnolipid-producing strains of three thermophilic bacteria, Thermus sp., T. aquaticus and Meiothermus ruber were identified that have not been previously described as rhamnolipid producers. Rhamnolipids were extracted from supernatant and further purified by thin-layer chromatography. Mass spectrometry with negative electrospray ionization revealed 77 rhamnolipid homologues varying in chain length and unsaturation. Tandem mass spectrometry identified mono-rhamnolipid and di-rhamnolipid homologues containing one or two 3-hydroxy-fatty acids, saturated, monounsaturated or diunsaturated, even- or odd-chain, up to unusual long chains with 24 carbon atoms. The stereochemistry of rhamnose was L and that of 3-hydroxy-fatty acids was R, the position of double bonds in monoenoic acids was cis ω-9. All three strains produced a rhamnolipid that differs in structure from Pseudomonas aeruginosa rhamnolipids and exhibits excellent surfactant properties. Importantly, in comparison to P. aeruginosa both strains, i.e., Thermus and Meiothermus, are Biosafety level 1 microorganisms and are not pathogenic to humans.


Thermus sp. T. aquaticus Meiothermus ruber Rhamnolipids Tandem mass spectrometry Biosurfactant 



The research was supported by GACR P503/10/P182, GACR P503/11/0215, and by Institutional Research Concept AV 0Z 502 0910.

Supplementary material

792_2011_400_MOESM1_ESM.doc (638 kb)
Supplementary material 1 (DOC 638 kb)


  1. Abdel-Mawgoud AM, Lépine F, Déziel E. Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol. 2010;86:1323–36.PubMedCrossRefGoogle Scholar
  2. Bligh ED, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Biophysiol. 1959;37:911–7.CrossRefGoogle Scholar
  3. Bus J, Sies I, Lie Ken Jie MSF. 13C NMR of methyl, methylene and carbonyl carbon atoms of methyl alkenoates and alkynoates. Chem Phys Lipids. 1976;17:501–18.Google Scholar
  4. Busscher HJ, Neu TR, Van der Mei HC. Biosurfactant production by thermophilic dairy streptococci. Appl Microbiol Biotechnol. 1994;41:4–7.CrossRefGoogle Scholar
  5. Cameotra SS, Makkar RS. Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol. 1998;50:520–9.PubMedCrossRefGoogle Scholar
  6. Christie WW, Han X. Lipid analysis. 4th ed. Bridgwater: Oily Press; 2010.Google Scholar
  7. De Trebbau Acevedo G, Mclnerney MJ. Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol. 1996;16:1–7.CrossRefGoogle Scholar
  8. Denekamp C, Claeys M, Pocsfalvi G. Mechanism of cross-ring cleavage reactions in dirhamnosyl lipids: effect of the alkali ion. Rapid Commun Mass Spectrom. 2000;14:794–9.PubMedCrossRefGoogle Scholar
  9. Deziel E, Lepine F, Milot S, Villemur R. Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta/Mol Cell Biol Lipids. 2000;1485:145–52.Google Scholar
  10. Dubeau D, Déziel E, Woods D, Lépine F. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiol. 2009;9:263.PubMedCrossRefGoogle Scholar
  11. Gerwig GJ, Kamerling JR, Vliegenthart JFG. Determination of the d and l configuration of neutral monosaccharides by high-resolution capillary GLC. Carbohyd Res. 1978;62:349–57.CrossRefGoogle Scholar
  12. Haba E, Abalos A, Jauregui O, Espuny MJ, Manresa A. Use of liquid chromatography mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactants Deterg. 2003;6:155–61.CrossRefGoogle Scholar
  13. Heyd M, Kohnert A, Tan TH, Nusser M, Kirschhofer F, Brenner-Weiss G, Franzreb M, Berensmeier S. Development and trends of biosurfactant analysis and purification using rhamnolipids as an example. Anal Bioanal Chem. 2008;391:1579–90.PubMedCrossRefGoogle Scholar
  14. Horikoshi K, editor. Extremophiles Handbook. Tokyo: Springer; 2011.Google Scholar
  15. Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T. Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography–mass spectrometry. Lipids. 2000;35:233–6.PubMedCrossRefGoogle Scholar
  16. Jakob B, Voss G, Gerlach H. Synthesis of (S)- and (R)-3-hydroxyhexadecanoic acid. Tetrahedron Asymmetr. 1996;7:3255–62.CrossRefGoogle Scholar
  17. Jarvis FG, Johnson MJ. A glyco-lipide produced by Pseudomonas aeruginosa. J Amer Chem Soc. 1949;71:4124–6.CrossRefGoogle Scholar
  18. Kasai R, Okihara M, Asakawa J, Mizutani K, Tanaka O. 13C NMR study of α- and β-anomeric pairs of d-mannopyranosides and l-rhamnopyranosides. Tetrahedron. 1979;35:1427–32.CrossRefGoogle Scholar
  19. Knirel YA. Polysaccharide antigens of Pseudomonas aeruginosa. Crit Rev Microbiol. 1990;17:273–304.PubMedCrossRefGoogle Scholar
  20. Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araújo JM, Mitchell DA, Ramos LP, Krieger N. Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids. 2007;147:1–13.PubMedCrossRefGoogle Scholar
  21. Nie M, Yin X, Ren C, Wang Y, Xu F, Shen Q. Novel rhamnolipid biosurfactants produced by a polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnol Adv. 2010;28:635–43.PubMedCrossRefGoogle Scholar
  22. Ohtani I, Kusumi T, Kashman Y, Kakisawa H. High-field FT NMR application of Mosher method, the absolute-configurations of marine terpenoids. J Am Chem Soc. 1991;113:4092–5.CrossRefGoogle Scholar
  23. Pantazaki AA, Dimopoulou MI, Simou OM, Pritsa AA. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol. 2010;88:939–51.PubMedCrossRefGoogle Scholar
  24. Podlasek CA, Wu J, Stripe WA, Bondo PB, Serianni AS. [13C]-enriched methyl aldopyranosides: Structural interpretations of 13C–1H spin-coupling constants and 1H chemical shifts. J Amer Chem Soc. 1995;117:8635–44.CrossRefGoogle Scholar
  25. Price NPJ, Ray KJ, Vermillion K, Kuo T-M. MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohyd Res. 2009;344:204–9.CrossRefGoogle Scholar
  26. Rezanka T. Polyunsaturated and unusual fatty-acids from slime-molds. Phytochemistry. 1993;33:1441–4.CrossRefGoogle Scholar
  27. Rezanka T, Siristova L, Melzoch K, Sigler K. Identification of (S)-11-cycloheptyl-4-methylundecanoic acid in acylphosphatidylglycerol from Alicyclobacillus acidoterrestris. Chem Phys Lipids. 2009a;158:104–13.CrossRefGoogle Scholar
  28. Rezanka T, Siristova L, Melzoch K, Sigler K. Direct ESI–MS analysis of O-acyl glycosylated cardiolipins from the thermophilic bacterium Alicyclobacillus acidoterrestris. Chem Phys Lipids. 2009b;161:115–21.PubMedCrossRefGoogle Scholar
  29. Rooney AP, Price NPJ, Ray KJ, Kuo T-M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett. 2009;295:82–7.PubMedCrossRefGoogle Scholar
  30. Sharma A, Jansen R, Nimtz M, Johri BN, Wray V. Rhamnolipids from the rhizosphere bacterium Pseudomonas sp. GRP3 that reduces damping-off disease in chilli and tomato nurseries. J Nat Prod. 2007;70:941–7.PubMedCrossRefGoogle Scholar
  31. Shen W, Yang S, Li X. Electrospray ionization mass spectrometric detection of rhamnolipids and their acid precursors in Pseudomonas sp. BS-03 cultures. Chin J Biotechnol. 2005;25:83–7.Google Scholar
  32. Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Coll Surf B Biointerfaces. 2010;79:174–83.CrossRefGoogle Scholar
  33. Siristova L, Melzoch K, Rezanka T. Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs. Extremophiles. 2009;13:101–9.PubMedCrossRefGoogle Scholar
  34. Soberon-Chavez G, editor. Biosurfactants, from genes to applications, vol. 20 A. Berlin: Springer; 2011.Google Scholar
  35. Warabi K, Hamada T, Nakao Y, Matsunaga S, Hirota H, Van Soest RWM, Fusetani N. Axinelloside A, an unprecedented highly sulfated lipopolysaccharide inhibiting telomerase, from the marine sponge, Axinella infundibula. J Am Chem Soc. 2005;127:13262–70.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Tomáš Řezanka
    • 1
    Email author
  • Lucie Siristova
    • 2
  • Karel Sigler
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Department of Fermentation Chemistry and BioengineeringInstitute of Chemical Technology PraguePragueCzech Republic

Personalised recommendations