Advertisement

Extremophiles

, 15:711 | Cite as

Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences

  • Domink Esser
  • Theresa Kouril
  • Melanie Zaparty
  • Pawel Sierocinski
  • Patricia P. Chan
  • Todd Lowe
  • John Van der Oost
  • Sonja-Verena Albers
  • Dietmar Schomburg
  • Kira S. Makarova
  • Bettina Siebers
NOTE

Abstract

The thermoacidophiles Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 are considered key model organisms representing a major phylum of the Crenarchaeota. Because maintaining current, accurate genome information is indispensable for modern biology, we have updated gene function annotation using the arCOGs database, plus other available functional, structural and phylogenetic information. The goal of this initiative is continuous improvement of genome annotation with the support of the Sulfolobus research community.

Keywords

Archaea Thermoacidophiles Genome analysis Genomics 

Notes

Acknowledgments

The project has been performed in the course of the transnational SysMO initiative within the Sulfolobus Systems Biology “SulfoSYS” project. Partners gratefully acknowledge financial support from their respective national funding agencies (BMBF, NWO) as well as partner universities.

References

  1. Albers SV et al (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Appl Environ Microbiol 72:102–111PubMedCrossRefGoogle Scholar
  2. Albers SV et al (2009) SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation. Biochem Soc Trans 37:58–64PubMedCrossRefGoogle Scholar
  3. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68PubMedCrossRefGoogle Scholar
  4. Brügger K, Redder P, She Q, Confalonieri F, Zivanovic Y, Garrett RA (2002) Mobile elements in archaeal genomes. FEMS Microbiol Lett 206:131–141PubMedCrossRefGoogle Scholar
  5. Brügger K, Torarinsson E, Redder P, Chen L, Garrett RA (2004) Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements. Biochem Soc Trans 32:179–183PubMedCrossRefGoogle Scholar
  6. Chen L et al (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999PubMedCrossRefGoogle Scholar
  7. Deng L, Zhu H, Chen Z, Liang YX, She Q (2009) Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735–746PubMedCrossRefGoogle Scholar
  8. Frazzetto G (2003) White biotechnology. The application of biotechnology to industrial production holds many promises for sustainable development, but many products still have to pass the test of economic viability. EMBO Rep 4:835–837PubMedCrossRefGoogle Scholar
  9. Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719PubMedGoogle Scholar
  10. Makarova KS, Sorokin AV, Novichkov PS, Wolf YI, Koonin EV (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33Google Scholar
  11. Martusewitsch E, Sensen CW, Schleper C (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581PubMedCrossRefGoogle Scholar
  12. Pham TK, Sierocinski P, van der Oost J, Wright PC (2009) Quantitative proteomic analysis of Sulfolobus solfataricus membrane proteins. J Proteome Res 9:1165–1172CrossRefGoogle Scholar
  13. Redder P, She Q, Garrett RA (2001) Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. J Mol Biol 306:1–6PubMedCrossRefGoogle Scholar
  14. She Q, Peng X, Zillig W, Garrett RA (2001a) Genome evolution: gene capture in archaeal chromosomes. Nature 409:478PubMedCrossRefGoogle Scholar
  15. She Q et al (2001b) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedCrossRefGoogle Scholar
  16. Wagner M, Berkner S, Ajon M, Driessen AJM, Lipps G, Albers SV (2009) Expanding and understanding the genetic toolbox of the hyperthermophilic genus Sulfolobus. Biochem Soc Trans 37:97–101PubMedCrossRefGoogle Scholar
  17. Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the α-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488PubMedCrossRefGoogle Scholar
  18. Wurtzel O, Sapra R, Chen F, Zhu Y, Simmons BA, Sorek R (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141PubMedCrossRefGoogle Scholar
  19. Zaparty M, Siebers B (2010) Physiology, metabolism and enzymology of thermoacidophiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, TokyoGoogle Scholar
  20. Zaparty M et al (2009) “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 14:119–142PubMedCrossRefGoogle Scholar
  21. Zillig W, Stetter KO, Wunderl S (1980) The Sulfolobus-’Caldariella’ group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269CrossRefGoogle Scholar

Copyright information

© Springer 2011

Authors and Affiliations

  • Domink Esser
    • 1
  • Theresa Kouril
    • 1
  • Melanie Zaparty
    • 2
  • Pawel Sierocinski
    • 3
  • Patricia P. Chan
    • 4
  • Todd Lowe
    • 4
  • John Van der Oost
    • 3
  • Sonja-Verena Albers
    • 5
  • Dietmar Schomburg
    • 6
  • Kira S. Makarova
    • 7
  • Bettina Siebers
    • 1
  1. 1.Molecular Enzyme Technology and Biochemistry, Biofilm Centre, Faculty of ChemistryUniversity of Duisburg-EssenEssenGermany
  2. 2.Institute for Molecular and Cellular AnatomyUniversity of RegensburgRegensburgGermany
  3. 3.Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
  4. 4.Department of Biomolecular EngineeringUniversity of California Santa CruzSanta CruzUSA
  5. 5.Molecular Biology of Archaea, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch StrasseMarburgGermany
  6. 6.Department of Bioinformatics and BiochemistryTechnical University BraunschweigBraunschweigGermany
  7. 7.National Center for Biotechnology InformationNational Institutes of HealthBethesdaUSA

Personalised recommendations