Extremophiles

, Volume 15, Issue 2, pp 177–189 | Cite as

Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin

  • Anindita Das
  • P. P. Sujith
  • Babu Shashikant Mourya
  • Sushanta U. Biche
  • P. A. LokaBharathi
Original Paper

Abstract

It is hypothesized that in the deep-sea, under psychrophilic, barophilic and oligotrophic conditions, microbial community of Central Indian Basin (CIB) sediments could be chemosynthetic. In the dark, at near ambient temperature, 4 ± 2°C, 500 atm pressure, pelagic red clay could fix carbon at rates ranging from 100 to 500 nmol C g−1 dry wt day−1. These clays accumulate in the deepest and the most remote areas of the ocean and contain <30% biogenic material. These clays with volcanic signatures fixed 230–9,401 nmol C g−1 dry wt day−1 while siliceous radiolarian oozes of the basin fixed only 5–45 nmol C g−1 dry wt day−1. These rates are comparable to those of white smoker waters and are 1–4 orders of magnitude less than those of bacterial mats and active vents recorded at other localities worldwide. The experimental ratios of carbon fixation to metal oxidation in the sediments were 0–1 order of magnitude higher than the corresponding average theoretical ratio of 0.0215 (0.0218, 0.0222, 0.0207 and 0.0211 for Fe, Mn, Co and Ni, respectively) in the siliceous ooze. In case of pelagic red clay it was 0–2 orders higher than theoretical ratio. Thus, chemosynthetic activity could be more widespread, albeit at low rates, than previously considered for abyssal basins. These environments may be dependent partially or even wholly on in situ microbial primary production for their carbon requirements rather than on photosynthetically derived detritus from surface waters.

Keywords

Chemosynthesis Metal oxidation Bacteria Bioenergetics Central Indian Basin 

Notes

Acknowledgments

The authors acknowledge the Director, NIO for encouragement and constant support. Thanks are extended to the project leaders of “Environmental studies for nodule mining in Central Indian Basin (PMN-EIA)”and PMN-Survey, and the onboard teams of the ABP-04, 17 and 26 cruises for facilities and samples. The Ministry of Earth Sciences (MoES), New Delhi, India is acknowledged for financial support, and the CNS and Particle Flux laboratories, Geological Oceanography, NIO for analytical support. AD thanks SC Dalal for valuable suggestions. AD and SPP acknowledge the CSIR, New Delhi for research grants. An abridged version of these results was presented as poster in the 4th International Symposium Chemosynthesis-based Ecosystems, 2009, Okinawa, Japan, with financial aid from Chemosynthetic Ecosystem Science (ChEss). The manuscript is NIO contribution no. 4885.

References

  1. Aldrich AP, van der Berg CMG (1998) Determination of Fe and its redox speciation in seawater using catalytic cathodic stripping voltametry. Electroanal 10(6):369–373CrossRefGoogle Scholar
  2. Antony R, Sujith PP, Fernandes SO, Verma P, Khedekar VD, LokaBharathi PA (2010) Cobalt immobilization by manganese oxidizing bacteria from the Indian Ridge System. Curr Microbiol. doi: 10.1007/s00284-010-9784-1
  3. Bach W, Edwards K (2003) Iron and sulphide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta 67(20):3871–3887CrossRefGoogle Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedCrossRefGoogle Scholar
  5. Casamayor EO, Garcia-Cantizano J, Mas J, Pedros-Alio C (2001) Microbial primary production in marine oxic–anoxic interfaces: main role of dark fixation in the Ebro River salt wedge estuary. Mar Ecol Prog Ser 215:49–56CrossRefGoogle Scholar
  6. Casamayor EO, Garcia-Cantizano J, Pedros Alio C (2008) Carbon dioxide fixation in the dark by photosynthetic bacteria in sulphide rich stratified lakes with oxic–anoxic interfaces. Limnol Oceanogr 53(4):1193–1203CrossRefGoogle Scholar
  7. Chase RL, Delaney JR, Karsten JL, Johnson HP, Juniper SK, Lupton JE, Scott SD, Tunnicliffe V, Hammond SR, McDuff RE (1985) Hydrothermal vents on an axis seamount of the Jaun de Fuca ridge. Nature 313:212–214CrossRefGoogle Scholar
  8. Chester R, Hughes MJ (1968) Scheme for the spectrophotometric determination of Cu, Pb, Ni, V and Co in marine sediments: applied earth science. Trans Inst Miner Metall 77:37–41Google Scholar
  9. Chevaldonne P, Desbruyeres D, Le Haitre M (1991) Time-series of temperature from three deep-sea hydrothermal vent sites. Deep Sea Res A 38:1417–1430CrossRefGoogle Scholar
  10. Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM (1991) Sulphide-driven autotrophic balance in the bacterial symbiont-containing hydrothermal vent tubeworm Riftia pachyptila. Biol Bull 180:135–153CrossRefGoogle Scholar
  11. Chin CS, Johnson KS, Coale KH (1992) Spectrophotometric determination of dissolved manganese in natural waters with 1-(2-pyridylazo)-2-naphthol: application to analysis in situ in hydrothermal plumes. Mar Chem 37:65–82CrossRefGoogle Scholar
  12. Culver DA, Brunskill GJ (1969) Fayetteville Green Lake, New York. V. Studies of primary production and zooplankton in a meromictic marl lake. Limnol Oceanogr 14:862–873CrossRefGoogle Scholar
  13. Danovaro R, Fabiano M, Della Croce N (1993) Labile organic matter and microbial biomass in deep sea sediments (Eastern Mediterranean sea). Deep-sea Res 40:953–965CrossRefGoogle Scholar
  14. Das A, Fernandes CEG, Naik SS, Nagender Nath B, Suresh I, Mascarenhas-Pereira MBL, Gupta SM, Khadge NH, Prakash Babu C, Borole DV, Sujith PP, Valsangkar AB, Mourya BS, Biche SU, Sharma R, LokaBharathi PA (2010) Bacterial response to contrasting sediment geochemistry in Central Indian Basin. Sedimentology. doi: 10.1111/j.1365-3091.2010.01183.x
  15. Dattagupta S, Miles LL, Barnabei MS, Fisher CR (2006) The hydrocarbon seep tubeworm Lamellibrachia luymesi primarily eliminates sulfate and hydrogen ions across its roots to conserve energy and ensure sulfide supply. J Exp Biol 209:3795–3805PubMedCrossRefGoogle Scholar
  16. Dattagupta S, Telesnicki G, Luley K, Predmore B, McGinley M, Fisher CR (2007) Submersible operated peepers for collecting porewater from deep-sea sediments. Limnol Oceanogr: Methods 5:263–268CrossRefGoogle Scholar
  17. Edwards KJ, Bach W, McCollom TM (2004) Neutrophilic iron-oxidizing bacteria in the Ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404CrossRefGoogle Scholar
  18. Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth-Sci Rev 45:45–60CrossRefGoogle Scholar
  19. Flemming BW, Delafontaine MT (2000) Mass physical properties of muddy intertidal sediments: some applications misapplications and non-applications. Cont Shelf Res 20:1179–1197CrossRefGoogle Scholar
  20. García-Cantizano J, Casamayor EO, Gasol JM, Guerrero R, Pedros-Alio C (2005) Partitioning of CO2 incorporation among guilds of microorganisms in lakes with oxic-anoxic interfaces and estimation of in situ specific growth rates. Microb Ecol 50:230–241PubMedCrossRefGoogle Scholar
  21. Gupta SM, Jauhari P (1994) Radiolarian abundance and geochemistry of the surface sediments from the central Indian Basin. Curr Sci 66(9):659–663Google Scholar
  22. Hatzikioseyian A, Tsezos M (2006) Modelling of microbial metabolism stoichiometry: application in bioleaching processes. Hydrometallurgy 83:29–34CrossRefGoogle Scholar
  23. Hobbie JE, Daley RJ, Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescent microscopy. Appl Environ Microbiol 3:1225–1228Google Scholar
  24. Jannasch HW (1989) Chemosynthetically sustained ecosystems in the deep sea. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Springer, Berlin, Heidelberg, New York, pp 147–166Google Scholar
  25. Jørgensen BB, Kuenen JG, Cohen Y (1979) Microbial transformation of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol Oceanogr 24:799–822CrossRefGoogle Scholar
  26. Jørgensen BB, Fossing H, Wirsen CO, Jannasch HW (1991) Sulfide oxidation in the anoxic Black Sea chemocline. Deep-sea Res 38(suppl.2):1083–1103CrossRefGoogle Scholar
  27. Juniper SK, Brinkhurst RO (1986) Water-column dark CO2 fixation and bacterial-mat growth in intermittently anoxic Saanich Inlet, British Columbia. Mar Ecol Prog Ser 33:41–50CrossRefGoogle Scholar
  28. Kamesh Raju KA, Ramprasad T (1989) Magnetic lineations in the Central Indian Basin for the period A24–A21: a study in relation to the Indian Ocean Triple Junction trace. Earth Planet Sci Lett 95(3/4):395–402CrossRefGoogle Scholar
  29. Karl DM (1995) Ecology of free-living, hydrothermal vent microbial communities. In: Karl DM (ed) The microbiology of deep-sea hydrothermal vents. CRC Press, Boca Raton, FL, pp 35–124Google Scholar
  30. Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9CrossRefGoogle Scholar
  31. Kochert G (1978) Carbohydrate determined by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JJ (eds) Handbook of physiological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97Google Scholar
  32. Levin LA, Michener RH (2002) Isotopic evidence for chemosynthesis-based nutrition of macrobenthos: The lightness of being at Pacific methane seeps. Limnol Oceanogr 47(5):1336–1345CrossRefGoogle Scholar
  33. LokaBharathi PA (1989) The occurrence of denitrifying colourless sulphur-oxidizing bacteria in marine waters and sediments as shown by the agar shake technique. FEMS Microbiol Ecol 62:335–342CrossRefGoogle Scholar
  34. LokaBharathi PA, Ortiz-conde BA, Nair S, Chandramohan D, Colwell RR (1994) FiveS rRNA sequences and fatty acid profiles of colourless sulfur-oxidising bacteria Ocean technology: perspectives. In: Sushilkumar, Agadi VV, Das VK, Desai BN (eds) Symposium on ocean technology. National Institute of Oceanography, Goa, India, 27–29 August 1992. Publ and Inf Dir, New Delhi, IndiaGoogle Scholar
  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagents. J Biol Chem 193:265–275PubMedGoogle Scholar
  36. Mandernack KW, Tebo BM (1999) In situ sulfide removal and CO2 fixation rates at deep-sea hydrothermal vents and the oxic–anoxic interface in Framvaren Fjord, Norway. Mar Chem 66:201–213CrossRefGoogle Scholar
  37. Mascarenhas-Pereira MBL, Nath BN, Borole DV, Gupta SM (2006) Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin. Mar Geol 229(1):79–90CrossRefGoogle Scholar
  38. McCarty PL (1965) Thermodynamics of biological synthesis and growth. In: Baers J (ed) Advances in water pollution research. Proceedings of 2nd international conference on water pollution research. Pergamon Press, Oxford, pp 169–199Google Scholar
  39. McCarty PL (1975) Stoichiometry of biological reactions. Prog Water Technol 7:157–172Google Scholar
  40. Mukhopadhyay R, Iyer SD, Ghosh AK (2002) The Indian Ocean Nodule Field: petrotectonic evolution and ferromanganese nodules. Earth Sci Rev 60:67–130CrossRefGoogle Scholar
  41. Nath BN, Mudholkar AV (1989) Early diagenetic processes affecting nutrients in the pore waters of Central Indian Ocean cores. Mar Geol 86:57–66CrossRefGoogle Scholar
  42. Nath BN, Borole DV, Aldahan A, Patil SK, Mascarenhas-Pereira MBL, Possnert G, Ericsson T, Ramaswamy V, Gupta SM (2008) 210Pb, 230Th, and 10Be in Central Indian Basin seamount sediments: signatures of degassing and hydrothermal alteration of recent origin. Geophys Res Lett 35:L09603. doi: 10.1029/2008GL033849 CrossRefGoogle Scholar
  43. Nelson DC, Wirsen CO, Jannasch HW (1989) Characterisation of large, autotrophic Beggiatoa species abundant at the hydrothermal vents of the Guaymus Basin. Appl Environ Microbiol 55:2909–2917PubMedGoogle Scholar
  44. Pai SC, Gong GC, Liu KK (1993) Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine. Mar Chem 41:343–351CrossRefGoogle Scholar
  45. Paropkari AL, Prakash Babu C, Mascarenhas A (1992) A critical game of depositional parameters controlling the variability of organic carbon in Arabian Sea sediments. Mar Geol 107:213–226CrossRefGoogle Scholar
  46. Patience RL, Clayton CJ, Kearsley AT, Rowland SJ, Bishop AN, Rees AWG, Bibby KG, Hopper AC (1990) An integrated biochemical, geochemical, and sedimentological study of organic diagenesis in sediments from Leg 112. In: Suess E, von Huene R, et al (eds) Proceedings of ODP, Science Results, vol 112, College Station, TX (Ocean Drilling Program), pp 135–153. doi: 10.2973/odp.proc.sr.112.191.1990
  47. Pattan JN, Jauhari P (2001) Major, trace, and rare earth elements in the sediments of the Central Indian Ocean Basin: their source and distribution. Mar Georesour Geotechnol 19:85–106Google Scholar
  48. Rao VP, Nath BN (1988) Nature, distribution and origin of clay minerals in grain size fractions of sediments from Manganese Nodule Field, Central Indian Ocean Basin. Ind J Mar Sci 17:202–207Google Scholar
  49. Rao VP, Kessarkar PM, Krumbein WE, Krajewski KP, Schneiders RJ (2003) Microbial dolomite crusts from the carbonate platform of western India. Sedimentology 50:819–830CrossRefGoogle Scholar
  50. Schulz HN, Schulz HD (2005) Large sulfur bacteria and the formation of phosphorite. Science 307:416–418PubMedCrossRefGoogle Scholar
  51. Schulz HD, Zabel M (eds) (2000) Marine geochemistry. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  52. Sorokin YI (1972) The bacterial population and the processes of hydrogen sulphide oxidation in the Black Sea. J Cons Int Explor Mer 34:423–454Google Scholar
  53. Sudhakar M (1989) Ore grade manganese nodules from the Central Indian Basin: an evaluation. Mar Mining 8:201–214Google Scholar
  54. Sujith PP, Khedekar VD, Girish AP, LokaBharathi PA (2010) Immobilization of Nickel by bacterial isolates from Indian Ridge System and chemical nature of the accumulated metal. Geomicrobiol J 27:424–434CrossRefGoogle Scholar
  55. Tang K-H, Feng X, Tang YJ, Blankenship RE (2009) Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114. PLoS ONE 4(10):e7233. doi: 10.1371/journal.pone.0007233 PubMedCrossRefGoogle Scholar
  56. Tuttle JH, Jannasch HW (1977) Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters. Microb Ecol 4:9–25CrossRefGoogle Scholar
  57. Warren BA (1982) The deep water of the Central Indian Basin. J Mar Res 40(Suppl.):823–860Google Scholar
  58. Wenxuan H, Zhijun J, Suping Y, Xiancai L, Zhilin C, Linye Z, Xuejun Z, Huaiyang Z (2000) Discovery of low-mature hydrocarbon in manganese nodules and ooze from the Central Pacific deep sea floor. Chinese Sci Bull 47(11):939–944Google Scholar
  59. Wirsen CO, Tuttle JH, Jannasch HW (1986) Activities of sulfur-oxidizing bacteria at the 21°N East Pacific Rise vent site. Mar Biol 92:449–456CrossRefGoogle Scholar
  60. Wirsen CO, Jannasch HW, Molyneaux SJ (1993) Chemosynthetic microbial activity at mid-Atlantic Ridge hydrothermal vent sites. J Geophys Res 98:9693–9703CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Anindita Das
    • 1
  • P. P. Sujith
    • 1
  • Babu Shashikant Mourya
    • 1
  • Sushanta U. Biche
    • 1
  • P. A. LokaBharathi
    • 1
  1. 1.Biological OceanographyNational Institute of OceanographyDona PaulaIndia

Personalised recommendations