, Volume 15, Issue 1, pp 45–57 | Cite as

Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus

  • Jonathan L. Klassen
  • Julia M. FoghtEmail author
Original Paper


We isolated several Hymenobacter-like strains from Victoria Upper Glacier, Antarctica, basal ice that diverged substantially from currently defined Hymenobacter species according to their 16S rRNA and gyrB gene phylogenies. All strains were psychrotolerant, heterotrophic aerobes which grew preferentially on low salt and low nutrient strength agar. Further phenotypic and chemotaxonomic characterization of these isolates supported their assignment as five novel species: H. algoricola sp. nov., H. antarcticus sp. nov., H. elongatus sp. nov., H. fastidiosus sp. nov., and H. glaciei sp. nov. Remarkable among these data was the prevalence of horizontal gene transfers and phenotypic variation, even between apparently closely related strains. These results suggest extensive non-vertical evolution within the genus Hymenobacter, and may reflect evolutionary trajectories resulting from dormancy, e.g., during interment in glacial ice.


Systematics Taxonomy Psychrophiles Psychrophile ecology Psychrophile physiology 



This work was supported by an NSERC postgraduate fellowship to J. L. K. and an NSERC Discovery Grant to J. M. F. DNA sequencing was conducted by the University of Alberta Department of Biological Sciences Molecular Biology Service Unit. We thank Dr. J. Euzéby (École Nationale Vétérinaire de Toulouse), Rozlyn Young (University of Alberta) and Yuumi Currah (University of Alberta) for assistance with species names, and Dr. J. Barker (University of Alberta) for provision of the VUG samples.

Supplementary material

792_2010_336_MOESM1_ESM.doc (262 kb)
Supplementary material 1 (DOC 262 kb)


  1. Aislabie JM, Broady PA, Saul DJ (2006a) Culturable aerobic heterotrophic bacteria from high altitude, high latitude soil of La Gorce Mountains (86°30′S, 147°W), Antarctica. Antarct Sci 18:313–321CrossRefGoogle Scholar
  2. Aislabie JM, Chhour K-L, Saul DJ, Miyauchi S, Ayton J, Paetzold RF, Balks MR (2006b) Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biol Biochem 38:3041–3056CrossRefGoogle Scholar
  3. Baik KS, Seong CN, Moon EY, Park Y-D, Yi H, Chun J (2006) Hymenobacter rigui sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 56:2189–2192CrossRefPubMedGoogle Scholar
  4. Berg OG, Kurland CG (2002) Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol 19:2265–2276PubMedGoogle Scholar
  5. Buczolits S, Denner EBM, Vybiral D, Wieser M, Kämpfer P, Busse HJ (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52:445–456PubMedGoogle Scholar
  6. Buczolits S, Denner EBM, Kämpfer P, Busse H-J (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of ‘Taxeobacter ocellatus’, ‘Taxeobacter gelipurpurascens’ and ‘Taxeobacter chitinivorans’ as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 56:2071–2078CrossRefPubMedGoogle Scholar
  7. Cheng SM, Foght JM (2007) Cultivation-independent and -dependent characterization of Bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol 59:318–330CrossRefPubMedGoogle Scholar
  8. Christensen H, Bisgaard M, Frederiksen W, Mutters R, Kuhnert P, Olsen JE (2001) Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify Recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol 51:2221–2225PubMedGoogle Scholar
  9. Christner BC, Skidmore ML, Priscu JC, Tranter M, Foreman CM (2008) Bacteria in subglacial environments. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 51–71CrossRefGoogle Scholar
  10. Collins MD, Hutson RA, Grant IR, Patterson MF (2000) Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 50:731–734PubMedGoogle Scholar
  11. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-supported islands of biodiversity within a hyperarid, high-elevation landscape on Socompa Volcano, Puna de Atacama, Andes. Appl Environ Microbiol 75:735–747CrossRefPubMedGoogle Scholar
  12. Dai J, Wang Y, Zhang L, Tang Y, Luo X, An H, Fang C (2009) Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 32:543–548CrossRefPubMedGoogle Scholar
  13. De Bruijn FJ (1992) Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain-reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58:2180–2187PubMedGoogle Scholar
  14. Dear S, Staden R (1991) A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res 19:3907–3911CrossRefPubMedGoogle Scholar
  15. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Nat Acad Sci USA 106:16428–16433CrossRefPubMedGoogle Scholar
  16. Felis GE, Dellaglio F (2007) On species descriptions based on a single strain: proposal to introduce the status species proponenda (sp. pr.). Int J Syst Evol Microbiol 57:2185–2187CrossRefPubMedGoogle Scholar
  17. Felsenstein J (1989) PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  18. Foght J, Aislabie J, Turner S, Brown CE, Ryburn J, Saul DJ, Lawson W (2004) Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol 47:329–340CrossRefPubMedGoogle Scholar
  19. Fredrickson JK, Li S-mW, Gaidamakova EK, Matrosova VY, Zhai M, Sulloway HM, Scholten JC, Brown MG, Balkwill DL, Daly MJ (2008) Protein oxidation: key to bacterial desiccation resistance? ISME J 2:393–403CrossRefPubMedGoogle Scholar
  20. Fujii M, Takano Y, Kojima H, Hoshino T, Tanaka R, Fukui M (2010) Microbial community structure, pigment composition, and nitrogen source of Red Snow in Antarctica. Microb Ecol 59:466–475CrossRefPubMedGoogle Scholar
  21. Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Phil Trans R Soc B 361:1917–1927CrossRefPubMedGoogle Scholar
  22. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B, Gallikowski CA (1998) Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 21:374–383PubMedGoogle Scholar
  23. Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourne-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67CrossRefGoogle Scholar
  24. Hurst CJ, Crawford RL, Garland JL, Lipson DA, Mills AL, Stetzenbach LD (2007) Manual of environmental microbiology, 3rd edn. ASM Press, Herndon, VIGoogle Scholar
  25. Kim K-H, Im W-T, Lee S-T (2008) Hymenobacter soli sp. nov., isolated from grass soil. Int J Syst Evol Microbiol 58:941–945CrossRefPubMedGoogle Scholar
  26. Klassen JL (2009) Carotenoid diversity in novel Hymenobacter strains isolated from Victoria Upper Glacier, Antarctica, and implications for the evolution of microbial carotenoid biosynthesis. Department of Biological Sciences, University of Alberta, EdmontonGoogle Scholar
  27. Klassen JL, Foght JM (2008) Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 74:2016–2022CrossRefPubMedGoogle Scholar
  28. Klassen JL, McKay R, Foght JM (2009) 2′-Methyl and 1′-xylosyl derivatives of 2′-hydroxyflexixanthin are major carotenoids of Hymenobacter species. Tetrahedron Lett 50:2656–2660CrossRefGoogle Scholar
  29. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  30. Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 31–50CrossRefGoogle Scholar
  31. Mojib Z, Huang J, Hoover RB, Pikuta EV, Storrie-Lombardi M, Sattler B, Andersen D, Bej AK (2009) Diversity of bacterial communities in the lakes of Schirmacher Oasis, Antarctica. Proc SPIE Int Soc Opt Eng 7441:74410JGoogle Scholar
  32. Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K (2008) Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J 2:482–497CrossRefPubMedGoogle Scholar
  33. Polymenakou PN, Mandalakis M, Stephanou EG, Tselepides A (2008) Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environ Health Perspect 116:292–296CrossRefPubMedGoogle Scholar
  34. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park M-J, Earl AM, Shank NC, Small AM, Henk MC, Battista JR, Kämpfer P, da Costa MS (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235CrossRefPubMedGoogle Scholar
  35. Reichenbach H (1992) Taxeobacter, a new genus of the Cytophagales with three new species. In: Jooste PJ (ed) Advances in the taxonomy and significance of Flavobaterium, Cytophaga and related bacteria, Proceedings of the 2nd international symposium on Flavobacterium, Cytophaga and related bacteria. University of the Orange Free State, Bloemfontein, South Africa, pp 182–185Google Scholar
  36. Rogers SO, Starmer WT, Castello JD (2004) Recycling of pathogenic microbes through survival in ice. Med Hypotheses 63:773–777CrossRefPubMedGoogle Scholar
  37. Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155CrossRefPubMedGoogle Scholar
  38. Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl Environ Microbiol 71:123–130CrossRefPubMedGoogle Scholar
  39. Staley JT (2006) The bacterial species dilemma and the genomic–phylogenetic species concept. Phil Trans Royal Soc B 361:1899–1909CrossRefGoogle Scholar
  40. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771CrossRefPubMedGoogle Scholar
  41. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  42. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  43. Venkateswaran K, Hattori N, La Duc MT, Kern R (2003) ATP as a biomarker of viable microorganisms in clean-room facilities. J Microbiol Methods 52:367–377CrossRefPubMedGoogle Scholar
  44. Xu J-L, Liu Q-M, Yu H-S, Jin F-X, Lee S-T, Im W-T (2009) Hymenobacter daecheongensis sp. nov., isolated from stream sediment. Int J Syst Evol Microbiol 59:1183–1187CrossRefPubMedGoogle Scholar
  45. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109PubMedGoogle Scholar
  46. Yergeau E, Newsham KK, Pearce DA, Kowalchuk GA (2007) Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environ Microbiol 9:2670–2682CrossRefPubMedGoogle Scholar
  47. Zhang S, Hou S, Ma X, Qin D, Chen T (2006) Culturable bacteria in Himalayan ice in response to atmospheric circulation. Biogeosci Discuss 3:765–778CrossRefGoogle Scholar
  48. Zhang Q, Liu C, Tang Y, Zhou G, Shen P, Fang C, Yokota A (2007) Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 57:1752–1756CrossRefPubMedGoogle Scholar
  49. Zhang G, Niu F, Busse H-J, Ma X, Liu W, Dong M, Feng H, An L, Cheng G (2008a) Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet Plateau permafrost region. Int J Syst Evol Microbiol 58:1215–1220CrossRefPubMedGoogle Scholar
  50. Zhang X, Ma X, Wang N, Yao T (2008b) New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions. FEMS Microbiol Ecol 67:21–29PubMedGoogle Scholar
  51. Zhang L, Dai J, Tang Y, Luo X, Wang Y, An H, Fang C, Zhang C (2009) Hymenobacter deserti sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 59:77–82CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations