, Volume 15, Issue 1, pp 39–44 | Cite as

Mercury resistance and volatilization by oil utilizing haloarchaea under hypersaline conditions

  • D. M. Al-Mailem
  • H. Al-Awadhi
  • N. A. Sorkhoh
  • M. Eliyas
  • S. S. RadwanEmail author
Original Paper


The hydrocarbon utilizing haloarchaea, Haloferax (two strains), Halobacterium and Halococcus from a hypersaline coastal area of the Arabian Gulf, had the potential for resistance and volatilization of Hg2+. Individual haloarchaea resisted up to between 100 and 200 ppm HgCl2 in hydrocarbon free media with salinities between 1 and 4 M NaCl, but only up to between 20 and 30 ppm in a mineral medium containing 3 M NaCl, with 0.5% (w/v) crude oil, as a sole source of carbon and energy. Halococcus and Halobacterium volatilized more mercury than Haloferax. The individual haloarchaea consumed more crude oil in the presence of 3 M NaCl than in the presence of 2 M NaCl. At both salinities, increasing the HgCl2 concentration in the medium from 0 to 20 ppm resulted in decreasing the oil consumption values by the individual haloarchaea. However, satisfactory oil consumption still occurred in the presence of 10 ppm HgCl2. It was concluded that haloarchaea with the combined potential for mercury resistance and volatilization and hydrocarbon consumption could be useful in removing toxic mercury forms effectively from oil free, mercury contaminated, hypersaline environments, and mercury and oil, albeit less effectively, from oily hypersaline environments.


Crude oil Extreme salinity Haloarchaea Mercury resistance Mercury volatilization 



The work has been supported by University of Kuwait, Research grant SL 08/07. Thanks are due to the SAF unit, Kuwait University for their help in GLC and ICP-MS analysis through GS 02/01 and GS 01/05.


  1. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328CrossRefPubMedGoogle Scholar
  2. Baker-Austin C, Dopson M, Wexler M, Sawers RG, Stemmler A, Rosen BP, Bond PL (2007) Extreme arsenic resistance by the acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 11:425–434CrossRefPubMedGoogle Scholar
  3. Barkay T (1987) Adaptation of aquatic microbial communities to Hg2+ stress. Applied Environ Microbiol 53:2725–2732Google Scholar
  4. Barkay T, Gillman M, Turner RR (1997) Effects of dissolved organic carbon and salinity on bioavailability of mercury. Appl Environ Microbiol 63:4267–4271PubMedGoogle Scholar
  5. Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384CrossRefPubMedGoogle Scholar
  6. Barkay T, Kritee K, Boyd E, Geesey G (2010) A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environ Microbiol doi: 10.1111/j.1462-2920.2010.02260.x
  7. Barringer JL, Szabo Z, Kauffman LJ, Barringer TH, Stackelberg PE, Ivahnenko T, Rajagopalan S, Krabbenhoft DP (2005) Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain. Sci Tot Environ 346:169–183CrossRefGoogle Scholar
  8. Barringer JL, Szabo Z, Schneider D, Atkinson WD, Gallagher RA (2006) Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain. Sci Tot Environ 361:144–162CrossRefGoogle Scholar
  9. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263CrossRefGoogle Scholar
  10. Chiu HH, Shieh WY, Lin SY, Tseng CM, Chiang P, Dobler IW (2007) Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Sys Evolut Microbiol 57:1209–1216CrossRefGoogle Scholar
  11. Crespo-Medina M, Chatziefthimiou AD, Bloom NS, Luther GW III, Wright DD, Reinfelder JR, Vetriani C, Barkay T (2009) Adaptation of chemosynthetic microorganisms to elevated mercury concentrations in deep-sea hydrothermal vents. Limnol Oceanogr 54:41–49Google Scholar
  12. Hahne HCH, Kroontje W (1973) Significance of the pH and chloride concentration on behavior of heavy metal pollutants: Hg(II), Cd (II), Zn (II), and Pb(II). J Environ Qual 2:444–450CrossRefGoogle Scholar
  13. Han FX, Patterson WD, Xia Y, Sridhar BBM, Su Y (2006) Rapid determination of mercury in plant and soil samples using inductively coupled plasma atomic emission spectroscopy, a comparative study. Water Air Soil Pollut 170:161–171CrossRefGoogle Scholar
  14. Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaeobacteria. Microbiology 60:596–601Google Scholar
  15. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682CrossRefPubMedGoogle Scholar
  16. Mevarech M, Werczberger R (1985) Genetic transfer in Halobacterium volcanii. J Bacteriol 162:461–462PubMedGoogle Scholar
  17. Moore MJ, Distefano MD, Walsh CT, Schicring N, Pai EF (1989) Purification, crystallization, and preliminary X-ray diffraction studies of the flavoenzyme mercuric ion reductase from Bacillus sp. strain RC607. J Biol Chem 264:14386–14388PubMedGoogle Scholar
  18. Moore MJ, Miller SM, Walsh CT (1992) C-terminal cysteines of Tn 501 mercuric ion reductase. Biochemistry 31:1677–1685CrossRefPubMedGoogle Scholar
  19. Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750CrossRefPubMedGoogle Scholar
  20. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedGoogle Scholar
  21. Oren A, Gurevich P, Azachi M, Hents Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398CrossRefGoogle Scholar
  22. Osborn AM, Bruce KD, Strike P, Ritchie DA (1997) Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS Microbiol Rev 19:239–262CrossRefPubMedGoogle Scholar
  23. Pahan K, Gachhui R, Ray S, Chaudhuri J, Mandal A (1990) Characteristics of mercury resistant bacteria from West Bengal rivers. Indian J Microbiol 30:35–44Google Scholar
  24. Pahan K, Ray S, Gachhui R, Chaudhuri J, Mandal A (1991) Volatilization of mercury compounds and utilization of various aromatic compounds by a broad-spectrum resistant Bacillus pasteurii strain. Bull Environ Contam Toxicol 46:591–598CrossRefPubMedGoogle Scholar
  25. Pahan K, Ghosh DK, Chaudhuri J, Gachhui R, Ray S, Mandal A (1995) Mercury detoxifying enzymes within endospores of a broad-spectrum mercury resistant Bacillus pasteurii strain DR2. J Biosci 20:83–88CrossRefGoogle Scholar
  26. Pieper D, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefPubMedGoogle Scholar
  27. Radwan SS (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil biology vol 13. Springer-Verlag, Heidelberg, pp 275–297CrossRefGoogle Scholar
  28. Ramamoorthy S, Kushner DJ (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microbiol Ecol 2:162–176CrossRefGoogle Scholar
  29. Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49:713–721CrossRefPubMedGoogle Scholar
  30. Rosenberg E (2006) Hydrocarbon-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokarayotes, a Handbook on the Biology of Bacteria, vol 2, 3rd edn edn. Springer, Berlin, pp 564–577Google Scholar
  31. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 486:427–437CrossRefGoogle Scholar
  32. Schottel J (1978) The mercuric and organomercurial detoxifying enzymes from a plasmid-bearing strain of Escherichia coli. J Biol Chem 12:4341–4349Google Scholar
  33. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789CrossRefPubMedGoogle Scholar
  34. Sorkhoh NA, Ali N, Dashti N, Al-Mailem DM, Eliyas M, Radwan SS (2010) Soil bacteria with the combined potential for oil-utilization nitrogen-fixation and mercury-resistance. Int Biodetrio Biodeg 64:226–231CrossRefGoogle Scholar
  35. Summer AO, Silver S (1978) Microbial transformation of metals. Annu Rev Microbiol 32:37–672Google Scholar
  36. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand JC, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an incontaminated hypersaline pond (Camarque, France). Extremophiles 14:225–231CrossRefPubMedGoogle Scholar
  37. Walker JD, Colwell RR (1976) Oil, mercury, and bacterial interactions. Environ Sci Technol 10:1145–1147CrossRefGoogle Scholar
  38. Wang Y, Moore M, Levinson HS, Silver S, Walsh C, Mahler I (1989) Nucleotide sequence of a chromosomal mercury resistance determinant from Bacillus sp. with braod-spectrum mercury resistance. J Bacteriol 171:83–92PubMedGoogle Scholar
  39. Wang G, Kennedy SP, Fasiludeen S, Rensing C, DasDarma S (2004) Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J Bacteriol 186:3187–3194CrossRefPubMedGoogle Scholar
  40. Wiatrowski HA, Ward PM, Barkay T (2006) Novel reduction of mercury (II) by mercury-sensitive dissimilatory metal reducing bacteria. Environ Sci Technol 40:6690–6696CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • D. M. Al-Mailem
    • 1
  • H. Al-Awadhi
    • 1
  • N. A. Sorkhoh
    • 1
  • M. Eliyas
    • 1
  • S. S. Radwan
    • 1
    Email author
  1. 1.Microbiology Program, Department of Biological Sciences, Faculty of ScienceKuwait UniversitySafatKuwait

Personalised recommendations