Extremophiles

, Volume 14, Issue 4, pp 403–407

Proliferation of the hyperthermophilic archaeon Pyrobaculum islandicum by cell fission

  • Seiji Sonobe
  • Kazue Aoyama
  • Chihiro Suzuki
  • Ko-hei Saito
  • Kumiko Nagata
  • Teruo Shimmen
  • Yoko Nagata
Original Paper

Abstract

Pyrobaculum islandicum is a hyperthermophilic archaeon. P. islandicum cells have been suggested to multiply by constriction, budding and branching, as no septa were observed in cells by phase-contrast light microscopy. In this study, we observed the cells using transmission electron microscopy, scanning electron microscopy, and light microscopy with dark-field image analyses, and we report binary fission via septum formation to be the main mode of P. islandicum’s proliferation. “Long cells” reported previously were found to comprise several cylindrical cells that align in tandem.

Keywords

Archaeon Hyperthermophile Proliferation Cell fission Septum 

Abbreviations

TEM

Transmission electron microscopy

SEM

Scanning electron microscopy

LMD

Light microscopy with dark-field image analyses

References

  1. Baumeister W, Lembcke G (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24:567–575CrossRefGoogle Scholar
  2. Beuria TK, Mullapudi S, Mileykovskaya E, Sadasivam M, Dowhan W, Margolin W (2009) Adenine nucleotide-dependent regulation of assembly of bacterial tubulin-like FtsZ by a hypermorph of bacterial actin-like FtsA. J Biol Chem 284:14079–14086CrossRefGoogle Scholar
  3. Ettema TJG, Bernander R (2009) Cell division and the ESCRT complex. Commun Integr Biol 2:86–88Google Scholar
  4. Ferguson DJP, Birch-Andersen A (1979) Electron microscopy of a filamentous, segmented bacterium attached to the small intestine of mice from a laboratory animal colony in Denmark. Acta Pathol Microbiol Scand Sect B 87:247–252Google Scholar
  5. Horn C, Paulmann B, Kerlen G, Junker N, Huber H (1999) In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J Bacteriol 181:5114–5118Google Scholar
  6. Huber R, Kristjansson JK, Stetter KO (1987) Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C. Arch Microbiol 149:95–101CrossRefGoogle Scholar
  7. Itoh T, Suzuki K, Nakase T (1998) Thermocladium modestius gen. nov., sp. nov., a new genus of rod-shaped, extremely thermophilic crenarchaeote. Int J Syst Bacteriol 48:879–887CrossRefGoogle Scholar
  8. Itoh T, Suzuki K, Sanches PC, Nakase T (1999) Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49:1157–1163CrossRefGoogle Scholar
  9. Kamitsubo E, Kikuyama M (1992) Immobilization of endoplasm flowing contiguous to the actin cables upon electrical stimulus in Nitella internodes. Protoplasma 168:82–86CrossRefGoogle Scholar
  10. Krulwich TA, Pate JL (1971) Ultrastructural explanation for snapping postfission movements in Arthrobacter crystallopoietes. J Bacteriol 105:408–412Google Scholar
  11. Lindås A-C, Karlsson EA, Lindgren MT, Ettema TJG, Bernander R (2008) A unique cell division machinery in the Archaea. Proc Natl Acad Sci USA 105:18942–18946CrossRefGoogle Scholar
  12. Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R (2008) Cell cycle characteristics of Crenarchaeota: unity among diversity. J Bacteriol 190:5362–5367CrossRefGoogle Scholar
  13. Majerník AI, Lundgren M, McDermott P, Bernander R, Chong JPI (2005) DNA content and nucleoid distribution in Methanothermobacter thermautotrophicus. J Bacteriol 187:1856–1858CrossRefGoogle Scholar
  14. Phipps BM, Engelhardt H, Huber R, Baumeister W (1990) Three-dimensional structure of the crystalline protein envelope layer of the hyperthermophilic archaebacterium Pyrobaculum islandicum. J Struct Biol 103:152–163CrossRefGoogle Scholar
  15. Phipps BM, Huber R, Baumeister W (1991) The cell envelope of the hyperthermophilic archaebacterium Pyrobaculum organotrophum consists of two regularly arrayed protein layers: three-dimensional structure of the outer layer. Mol Microbiol 5:253–265CrossRefGoogle Scholar
  16. Rieger G, Müller K, Hermann R, Stetter KO, Rachel R (1997) Cultivation of hyperthermophilic archaea in capillary tubes resulting in improved preservation of fine structures. Arch Microbiol 168:373–379CrossRefGoogle Scholar
  17. Stetter KO, Zillig W (1985) Thermoplasma and the thermophilic sulfur-dependent archaebacteria. In: The Bacteria, vol 8. Academic Press, New York, NY, pp 85–170. ISBN 0-12-307208-5Google Scholar
  18. Vaughan S, Wickstead B, Gull K, Addinall SG (2004) Molecular evolution of FtsZ protein sequences encoded within the genomes of Achaea, Bacteria, and Eukaryota. J Mol Evol 58:19–39CrossRefGoogle Scholar
  19. Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926Google Scholar
  20. Wildhaber I, Baumeister W (1987) The cell envelope of Thermoproteus tenax: three-dimensional structure of the surface layer and its role in shape maintenance. EMBO J 6:1475–1480Google Scholar
  21. Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11CrossRefGoogle Scholar
  22. Zillig W, Holz I, Janekovic D, Klenk H-P, Imsel E, Trent J, Wunderl S, Forjaz VH, Coutinho R, Ferreira T (1990) Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Seiji Sonobe
    • 1
  • Kazue Aoyama
    • 2
  • Chihiro Suzuki
    • 3
  • Ko-hei Saito
    • 3
  • Kumiko Nagata
    • 2
  • Teruo Shimmen
    • 1
  • Yoko Nagata
    • 3
  1. 1.Graduate School of Life ScienceUniversity of HyogoKamigoriJapan
  2. 2.Department of BacteriologyHyogo College of MedicineMukogawaJapan
  3. 3.Department of Materials and Applied ChemistryCollege of Science and Technology, Nihon UniversityTokyoJapan

Personalised recommendations