Advertisement

Extremophiles

, Volume 14, Issue 4, pp 357–366 | Cite as

Temperature and nutrient induced responses of Lake Fryxell sulfate-reducing prokaryotes and description of Desulfovibrio lacusfryxellense, sp. nov., a pervasive, cold-active, sulfate-reducing bacterium from Lake Fryxell, Antarctica

  • W. Matthew Sattley
  • Michael T. Madigan
Original Paper

Abstract

The effects of temperature and carbon substrate availability on the stimulation of sulfate reduction by indigenous populations of sulfate-reducing prokaryotes (SRP) in permanently ice-covered Lake Fryxell, Antarctica were investigated. Psychrophilic and halotolerant, lactate-degrading SRP showed significant metabolic activity throughout all sampled depths of the water column, suggesting that such organisms, possibly of marine origin, may be key contributors to carbon and sulfur cycling in Lake Fryxell. Planktonic and benthic strains of lactate-oxidizing sulfate-reducing bacteria (SRB) were isolated from samples of various depths of the anoxic water column and from surficial sediments. Phylogenetic analyses of 16S rRNA gene sequences placed the Fryxell sulfate-reducer (FSR) strains within the Deltaproteobacteria and showed them to be most closely related to the Arctic marine species of SRB Desulfovibrio frigidus and Desulfovibrio ferrireducens. Based on phylogenetic and phenotypic differences between the Antarctic FSR strains and related species of the genus Desulfovibrio, strain FSRsT (=DSM 23315T =ATCC BAA-2083T) is proposed as the type strain of a novel species of cold-active SRB, Desulfovibrio lacusfryxellense, sp. nov.

Keywords

Sulfate-reducing bacteria Psychrophile Antarctica Lake Fryxell Desulfovibrio 

Abbreviations

dsrA

Dissimilatory sulfite reductase alpha subunit

MOPS

4-Morpholinepropanesulfonic acid

SR

Sulfate reduction

SRP

Sulfate-reducing prokaryotes

SRB

Sulfate-reducing bacteria

Notes

Acknowledgments

This work was supported by US National Science Foundation grants OPP0085481, MCB0237576, and OPP0739435. Raytheon Polar Services, Petroleum Helicopters, Inc., and John C. Priscu and the McMurdo LTER limnology team are acknowledged for logistical support in the Antarctic. We also thank the McMurdo LTER for some of the data used in Fig. 1b. We thank Steven Schmitt (IMAGE, SIUC) for electron microscopy and John P. Buffat for assistance in designing and constructing our high-resolution, peristaltic pump-driven, limnological sampling device. We also gratefully acknowledge Deborah O. Jung for technical assistance and help in preparing the figures and Andrew Burns for help with culturing SRB.

References

  1. Aiken G, McKnight D, Harnish R, Wershaw R (1996) Geochemistry of aquatic humic substances in the Lake Fryxell basin, Antarctica. Biogeochemistry 34:157–188CrossRefGoogle Scholar
  2. Alazard D, Dukan S, Urios A, Verhé F, Bouabida N, Morel F, Thomas P, Garcia J-L, Ollivier B (2003) Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178CrossRefPubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. Bowman JP, Rea SM, McCammon SA, McMeekin TA (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hills, Eastern Antarctica. Environ Microbiol 2:227–237CrossRefPubMedGoogle Scholar
  5. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(Database issue):D141–D145. doi: 10.1093/nar/gkn879
  6. Franzmann PD, Skyring GW, Burton HR, Deprez PP (1988) Sulfate reduction rates and some aspects of the limnology of four lakes and a fjord in the Vestfold Hills, Antarctica. Hydrobiologia 165:25–33CrossRefGoogle Scholar
  7. Howes BL, Smith RL (1990) Sulfur cycling in a permanently ice-covered amictic antarctic lake, Lake Fryxell. Antarctic J US 25:230–233Google Scholar
  8. Howes BL, Schlezinger DR, Goehringer DD, Brown-Leger S (1992) Carbon cycling in a redox-stratified Antarctic lake, Lake Fryxell. Antarctic J US 27:263–265Google Scholar
  9. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877CrossRefPubMedGoogle Scholar
  10. Iizuka H, Okazaki H, Seto N (1969) A new sulfate-reducing bacterium isolated from Antarctica. J Gen Appl Microbiol 15:11–18CrossRefGoogle Scholar
  11. Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen.nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168CrossRefGoogle Scholar
  12. Karr EA, Sattley WM, Jung DO, Madigan MT, Achenbach LA (2003) Remarkable diversity of phototrophic purple bacteria in a permanently frozen Antarctic lake. Appl Environ Microbiol 69:4910–4914CrossRefPubMedGoogle Scholar
  13. Karr EA, Sattley WM, Rice MR, Jung DO, Madigan MT, Achenbach LA (2005) Diversity and distribution of sulfate-reducing bacteria in permanently frozen Lake Fryxell, McMurdo Dry Valleys, Antarctica. Appl Environ Microbiol 71:6353–6359CrossRefPubMedGoogle Scholar
  14. Karr EA, Ng JM, Belchik SM, Sattley WM, Madigan MT, Achenbach LA (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666CrossRefPubMedGoogle Scholar
  15. Knoblauch C, Sahm K, Jørgensen BB (1999) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov., and Desulfotalea arctica sp. nov. Int J Syst Bacteriol 49:1631–1643CrossRefPubMedGoogle Scholar
  16. Madigan MT, Jung DO, Woese CR, Achenbach LA (2000) Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch Microbiol 173:269–277CrossRefPubMedGoogle Scholar
  17. Nielsen JT, Liesack W, Finster K (1999) Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Bacteriol 49:859–865CrossRefPubMedGoogle Scholar
  18. Priscu JC, Priscu LR, Vincent WF, Howard-Williams C (1987) Photosynthate distribution by microplankton in permanently ice-covered Antarctic desert lakes. Limnol Oceanogr 32:260–270CrossRefGoogle Scholar
  19. Purdy KJ, Nedwell DB, Embley TM (2003) Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Appl Environ Microbiol 69:3181–3191CrossRefPubMedGoogle Scholar
  20. Rees GN, Janssen PH, Harfoot CG (1986) An unusual strain of Desulfovibrio sp. from an Antarctic lake. FEMS Microbiol Lett 37:363–366CrossRefGoogle Scholar
  21. Sahm K, Knoblauch C, Amann R (1999) Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol 65:3976–3981PubMedGoogle Scholar
  22. Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72:5562–5568CrossRefPubMedGoogle Scholar
  23. Sattley WM, Madigan MT (2007) Cold-active acetogenic bacteria from surficial sediments of perennially ice-covered Lake Fryxell, Antarctica. FEMS Microbiol Lett 272:48–54CrossRefPubMedGoogle Scholar
  24. Sattley WM, Jung DO, Madigan MT (2008) Psychrosinus fermentans gen. nov., sp. nov., a lactate-fermenting bacterium from near-freezing oxycline waters of a meromictic Antarctic lake. FEMS Microbiol Lett 287:121–127CrossRefPubMedGoogle Scholar
  25. Smith RL, Miller LG, Howes BL (1993) The geochemistry of methane in Lake Fryxell, an amictic, permanently ice-covered, antarctic lake. Biogeochemistry 21:95–115CrossRefGoogle Scholar
  26. Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Päuker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139CrossRefPubMedGoogle Scholar
  27. Takacs CD, Priscu JC, McKnight DM (2001) Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnol Oceanogr 46:1189–1194CrossRefGoogle Scholar
  28. Tarpgaard IH, Boetius A, Finster K (2005) Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes. Antonie van Leeuwenhoek 89:109–124CrossRefPubMedGoogle Scholar
  29. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238CrossRefGoogle Scholar
  30. Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17:40–48CrossRefPubMedGoogle Scholar
  31. Vandieken V, Knoblauch C, Jørgensen BB (2006a) Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Int J Syst Evol Microbiol 56:687–690CrossRefPubMedGoogle Scholar
  32. Vandieken V, Knoblauch C, Jørgensen BB (2006b) Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J Syst Evol Microbiol 56:681–685CrossRefPubMedGoogle Scholar
  33. Vincent WF (1981) Production strategies in Antarctic inland waters: Phytoplankton eco-physiology in a permanently ice-covered lake. Ecology 62:1215–1224CrossRefGoogle Scholar
  34. Wagner B, Melles M, Doran PT, Kenig F, Forman SL, Pierau R, Allen P (2006) Glacial and postglacial sedimentation in the Fryxell basin, Taylor Valley, southern Victoria Land, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 241:320–337CrossRefGoogle Scholar
  35. Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90CrossRefGoogle Scholar
  36. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, New York, pp 3353–3378Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA
  2. 2.Division of Natural SciencesIndiana Wesleyan UniversityMarionUSA

Personalised recommendations