, Volume 14, Issue 3, pp 321–328 | Cite as

Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf

  • D. M. Al-Mailem
  • N. A. Sorkhoh
  • H. Al-Awadhi
  • M. Eliyas
  • S. S. RadwanEmail author
Original Paper


Two extreme halophilic Haloferax strains and one strain each of Halobacterium and Halococcus were isolated from a hypersaline coastal area of the Arabian Gulf on a mineral salt medium with crude oil vapor as a sole source of carbon and energy. These archaea needed at least 1 M NaCl for growth in culture, and grew best in the presence of 4 M NaCl or more. Optimum growth temperatures lied between 40 and 45ºC. The four archaea were resistant to the antibiotics chloramphenicol, cycloheximide, nalidixic acid, penicillin, streptomycin and tetracycline. The strains could grow on a wide scope of aliphatic and aromatic (both mono-and polynuclear) hydrocarbons, as sole sources of carbon and energy. Quantitative measurements revealed that these extreme halophilic prokaryotes could biodegrade crude oil (13–47%, depending on the strain and medium salinity), n-octadecane (28–67%) and phenanthrene (13–30%) in culture after 3 weeks of incubation. The rates of biodegradation by all strains were enhanced with increasing NaCl concentration in the medium. Optimal concentration was 3 M NaCl, but even with 4 M NaCl the hydrocarbon-biodegradation rates were higher than with 1 and 2 M NaCl. It was concluded that these archaea could contribute to self-cleaning and bioremediation of oil-polluted hypersaline environments.


Archaea Bioremediation Crude oil Extreme halophiles Hydrocarbon biodegradation 



The work was supported by the University of Kuwait, Research grant SL 01/08. Thanks are due to the SAF unit and GRF, Kuwait University, for their help in GLC (GS 02/01) and genetic analyses (GS 01/02).


  1. Akolkar AV, Deshpande GM, Ravel KN, Durai D, Nerurkar AS, Desai AJ (2008) Organic solvent tolerance of Halobacterium sp. SP1(1) and its extracellular protease. J Basic Microbiol 48:421–425CrossRefPubMedGoogle Scholar
  2. Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4:5–7CrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedGoogle Scholar
  4. Al-Zamel AZ (1983) Geology and oceanography of recent sediments of Jazirat Bubiyan and Ras As-Sabiyah, Kuwait, Arabian Gulf. Unpublished PhD thesis, University of Sheffield, Sheffield, pp 273–274Google Scholar
  5. Aono R, Aibe K, Inoue A, Horikoshi K (1991) Preparation of organic solvent-tolerant mutants from Escherichia coli K 12. Agric Biol Chem 55:1935–1938Google Scholar
  6. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263CrossRefGoogle Scholar
  7. Brito-Echeverria J, Lopez-Lopez A, Yarza P, Anton J, Rosello-Mora R (2009) Occurrence of Halococcus spp in the nostrils salt glands of the seabird Calonectris diomedea. Extremophiles 13:557–565CrossRefPubMedGoogle Scholar
  8. Cerniglia CE (1984) Microbial transformation of aromatic hydrocarbons. In: Atlas RM (ed) Petroleum microbiology. Macmillan, New YorkGoogle Scholar
  9. Cuadros-Orellana S, Pohlschro M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegrad 57:151–154CrossRefGoogle Scholar
  10. Denner EBM, McGenity TJ, Busse HJ, Grant WD, Wanner G, Stan-Lotter H (1994) Halococcus salifodinae sp nov., an archaeal isolate from an Austrian salt mine. Int J Syst Bacteriol 44:774–780CrossRefGoogle Scholar
  11. Diaz MP, Grigson SJW, Peppiatt C, Burgess JG (2000) Isolation and characterization of novel hydrocarbon degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2:522–532CrossRefGoogle Scholar
  12. Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161:445–452CrossRefGoogle Scholar
  13. Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration shift (NIH shift). Appl Environ Microbiol 68:6246–6255CrossRefPubMedGoogle Scholar
  14. Falb M, Muller K, Königsmaier L, Oberwinkler T, Horn P, Gronau SV, Gonzalez O, Pfeiffer F, Bauer EB, Oesterhelt D (2008) Metabolism of halophilic archaea. Extremophiles 12:177–196CrossRefPubMedGoogle Scholar
  15. Goh F, Leuko S, Allen MA, Bowman JB, Kamekura M, Neilan BA, Burns PB (2006) Halococcus hamelinensis sp nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay. Australia Int J Syst Evol Microbiol 56:1323–1329CrossRefGoogle Scholar
  16. Grant WD, Kamekura M, McGenity TJ, Ventosa A (2001) Class III. Halobacteria class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, 1:294–334Google Scholar
  17. Kerr RP, Capone DG (1988) The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. Mar Environ Res 26:181–198CrossRefGoogle Scholar
  18. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Environ Microbiol 72:3531–3542CrossRefPubMedGoogle Scholar
  19. Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaeobacteria. Microbiology 60:596–601Google Scholar
  20. Kunznetsov VD, Zaitesve TA, Vakulenko LV, Filippova SN (1992) Strepromyces albiazalis sp nov. L a new petroleum hydrocarbon degrading species of thermo-and halotolerant Streptomyces. Microbiology 61:62–67Google Scholar
  21. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92PubMedGoogle Scholar
  22. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682CrossRefPubMedGoogle Scholar
  23. Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116CrossRefPubMedGoogle Scholar
  24. Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663CrossRefPubMedGoogle Scholar
  25. Mevarech M, Werczberger R (1985) Genetic transfer in Halobacterium volcanii. J Bacteriol 162:461–462PubMedGoogle Scholar
  26. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63PubMedGoogle Scholar
  27. Oren A, Gurevich P, Azachi M, Hents Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3:387–398CrossRefGoogle Scholar
  28. Pieper D, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefPubMedGoogle Scholar
  29. Radwan SS (2009) Phytoremediation for oily desert soil. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation. Springer, BerlinGoogle Scholar
  30. Ramos JL, Duque E, Gallegos MT, Godoy P, Ramos-Gonzalez MI, Rojas A, Teran W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Annu Rev Microbiol 56:743–768CrossRefPubMedGoogle Scholar
  31. Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Eng 19:175–216Google Scholar
  32. Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinities on the degradation of diesel fuel by bacteria consortia. Can J Microbiol 49:713–721CrossRefPubMedGoogle Scholar
  33. Rosenberg E (2006) Hydrocarbon-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, a handbook on the biology of bacteria, vol Vol. 2, 3rd edn edn. Springer, Berlin, pp 564–577Google Scholar
  34. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Radax C, Gruber C (2002) Halococcus dombrowskii sp nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814CrossRefPubMedGoogle Scholar
  35. Tapilatu YH, Grossi V, Acquaviva M, Militon C, Bertrand J-C, Cuny P (2010) Isolation of hydrocarbon-degrading extremely halophilic archaea from an uncontaminated hypersaline pond (Camarque, France). Extremophiles 14:225–231CrossRefPubMedGoogle Scholar
  36. Usami R, Fukushima T, Mizuki T, Yoshida Y, Inoue A, Horikoshi K (2005) Organic solvent tolerance of halophilic archaea, Haloarcula strains: effects of NaCl concentration on the tolerance and polar lipid composition. J Biosci Bioeng 99:169–174CrossRefPubMedGoogle Scholar
  37. Van Hamme JD, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549CrossRefPubMedGoogle Scholar
  38. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384PubMedGoogle Scholar
  39. Von Wedal RJ, Mosquera JF, Goldsmith CD, Hater GR, Wong A, Fox TA, Hunt WT, Paulies MS, Quiros JM, Wiegand JW (1988) Bacterial biodegradation of petroleum hydrocarbons in ground water: in situ augmented bioreclamation with enrichments isolates in California. Water Sci Technol 20:501–503Google Scholar
  40. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Environ Microbiol 35:85–90Google Scholar
  41. Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14:319–332CrossRefGoogle Scholar
  42. Yang L, Lai CT, Shieh WK (2000) Biodegradation of dispersed diesel fuel under high saline conditions. Water Res 34:3303–3314CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • D. M. Al-Mailem
    • 1
  • N. A. Sorkhoh
    • 1
  • H. Al-Awadhi
    • 1
  • M. Eliyas
    • 1
  • S. S. Radwan
    • 1
    Email author
  1. 1.Microbiology Program, Department of Biological Sciences, Faculty of ScienceKuwait UniversitySafatKuwait

Personalised recommendations