, Volume 14, Issue 3, pp 297–304 | Cite as

Characterization of Microaerobacter geothermalis gen. nov., sp. nov., a novel microaerophilic, nitrate- and nitrite-reducing thermophilic bacterium isolated from a terrestrial hot spring in Tunisia

  • Nadia Khelifi
  • Emna Ben Romdhane
  • Abdeljabbar Hedi
  • Anne Postec
  • Marie-Laure Fardeau
  • Moktar Hamdi
  • Jean-Luc Tholozan
  • Bernard Ollivier
  • Agnès Hirschler-RéaEmail author
Original Paper


A novel thermophilic anaerobic and microaerophilic bacterium (optimal growth in the presence of 5–10% O2), strain Nad S1T was isolated from the terrestrial hot spring of Hammam Sidi Jdidi, Nabeul, Tunisia. Cells were motile rods having a Gram-positive cell wall structure. Strain Nad S1T grew optimally at 55°C (range 37–70°C). Optimum pH for growth was 6.5–7.0. It was halotolerant growing with NaCl up to 7% (optimum concentration 1.5–3.0%). It grew chemoorganotrophically on various carbohydrates, organic-acids and amino-acids as energy sources, or chemolithotrophically on H2 using nitrate, as terminal electron acceptor. Beside oxygen (under microaerobic conditions) and nitrate, nitrite was also used. Nitrate was completely reduced to N2. No fermentation occurred. The genomic DNA G + C content was 41.8 mol%. Based on 16S rRNA gene sequence analysis, strain Nad S1T belongs to the Bacillaceae family within the class ‘Bacilli’. Because of its phylogenetic and phenotypic characteristics, we propose this isolate to be assigned as a novel genus and a novel species within the domain Bacteria, Microaerobacter geothermalis gen. nov., sp. nov. The type strain is Nad S1T (=DSM 22679T =JCM 16213T).


Microaerobacter geothermalis Denitrifying bacterium Microaerophilic Thermophilic Terrestrial hot spring 



We thank Manon Joseph for doing electron microscopy, Professor Jean Paul Euzéby for assistance with the naming of the organism and Dr. Pierre Roger for revising the manuscript. This work was supported, in part, by a French CNRS-INSU grant (BIOHYDEX EC2CO-MicrobiEn project).


  1. Aguiar P, Beveridge TJ, Reysenbach AL (2004) Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54:33–39CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  4. Baross JA (1995) Isolation, growth and maintenance of hyperthermophiles. In: Robb FT, Place AR (eds) Archaea. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 15–23Google Scholar
  5. Benson DA, Boguski MS, Lipman DJ, Oullette BFF, Rapp BA, Wheeler DL (1999) GenBank. Nucleic Acids Res 27:12–17CrossRefPubMedGoogle Scholar
  6. Blank CE, Cady SL, Pace NR (2002) Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68:5123–5135CrossRefPubMedGoogle Scholar
  7. Boone DR, Liu Y, Zhao ZJ, Balkwill DL, Drake GR, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448CrossRefPubMedGoogle Scholar
  8. Cord-Ruwish R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36CrossRefGoogle Scholar
  9. Fardeau ML, Cayol JL, Magot M, Ollivier B (1993) H2 oxidation in the presence of thiosulfate, by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332CrossRefGoogle Scholar
  10. Fardeau ML, Barsotti V, Cayol JL, Guasco S, Michotey V, Joseph M, Bonin P, Ollivier B (2010) Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes. Extremophiles. doi: 10.1007/s00792-010-0302-y
  11. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Ferris MJ, Magnuson TS, Fagg JA, Thar R, Kühl M, Sheehan KB, Henson JM (2003) Microbially mediated sulphide production in a thermal, acidic algal mat community in Yellowstone National Park. Environ Microbiol 5:954–960CrossRefPubMedGoogle Scholar
  14. Fishbain S, Dillon JG, Gough HL, Stahl DA (2003) Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl Environ Microbiol 69:3663–3667CrossRefPubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  16. Hall JR, Mitchell KR, Jackson-Weaver O, Kooser AS, Cron BR, Crossey LJ, Takacs-Vesbach CD (2008) Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74:4910–4922CrossRefPubMedGoogle Scholar
  17. Haouari O, Fardeau ML, Cayol JL, Casiot C, Elbaz-Poulichet F, Hamdi M, Joseph M, Ollivier B (2008) Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. Int J Syst Evol Microbiol 58:2529–2535CrossRefPubMedGoogle Scholar
  18. Johnson DB, Okibe N, Roberto FF (2003) Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68CrossRefPubMedGoogle Scholar
  19. Kanso S, Greene AC, Patel BKC (2002) Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874CrossRefPubMedGoogle Scholar
  20. L’Haridon S, Miroshnichenko ML, Kostrikina NA, Tindall BJ, Spring S, Schumann P, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2006a) Vulcanibacillus modesticaldus gen. nov., sp. nov., a strictly anaerobic, nitrate-reducing bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 56:1047–1053CrossRefPubMedGoogle Scholar
  21. L’Haridon S, Reysenbach AL, Tindall BJ, Schönheit P, Banta A, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C (2006b) Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:2843–2852CrossRefPubMedGoogle Scholar
  22. Lauerer G, Kristjansson JK, Langworthy TA, Konig H, Stetter KO (1986) Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97°C. Syst Appl Microbiol 8:100–105Google Scholar
  23. Laurinavichyus KS, Kotelnikova SV, Obraztsova AY (1988) New species of thermophilic methane-producing bacteria Methanobacterium thermophilum. Microbiology 57:832–838Google Scholar
  24. Lino T, Nakagawa T, Mori K, Harayama S, Suzuki K (2008) Calditerrivibrio nitroreducens gen. nov., sp. nov., a thermophilic, nitrate-reducing bacterium isolated from a terrestrial hot spring in Japan. Int J Syst Evol Microbiol 58:1675–1679CrossRefGoogle Scholar
  25. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P, Fritze D, Heyndrickx M, Kämpfer P, Rabinovitch L, Salkinoja-Salonen MS, Seldin L, Ventosa A (2009) Porposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121CrossRefPubMedGoogle Scholar
  26. Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689PubMedGoogle Scholar
  27. Ludwig W, Schleifer KH, Whitman WB (2009) Revised road map to the phylum Firmicutes. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology. The Firmicutes, vol 3. Springer, New York, pp 1–13Google Scholar
  28. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167Google Scholar
  29. Meyer-Dombard DR, Shock EL, Amend JP (2005) Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3:211–227CrossRefGoogle Scholar
  30. Miranda-Tello E, Fardeau ML, Fernández L, Ramírez F, Cayol JL, Thomas P, Garcia JL, Ollivier B (2003) Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9:97–103CrossRefPubMedGoogle Scholar
  31. Reysenbach AL (2001) Phylum BI Aquificaceae phy. nov. In: Boone DR, Castenholz RW, Garrity GM, Staley JT, Brenner DJ, Goodfellow M, Krieg NR, Rainey FA, Schleifer KH (eds) Bergey’s manual of systematic bacteriology. The Archaea and the deeply branching and phototrophic Bacteria, vol 1. Springer, New York, pp 359–367Google Scholar
  32. Rhuland LE, Work E, Denman RF, Hoare DS (1955) The behaviour of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846CrossRefGoogle Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  35. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43CrossRefPubMedGoogle Scholar
  36. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMedGoogle Scholar
  37. Xiang X, Dong X, Huang L (2003) Sulfolobus tengchongensis sp. nov., a novel thermoacidophilic archaeon isolated from a hot spring in Tengchong, China. Extremophiles 7:493–498CrossRefPubMedGoogle Scholar
  38. Yoon JH, Oh TK, Park YH (2004) Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. Int J Syst Evol Microbiol 54:2163–2167CrossRefPubMedGoogle Scholar
  39. Yumoto I, Yamazaki K, Sawabe T, Nakano K, Kawasaki K, Ezura Y, Shinano H (1998) Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571CrossRefPubMedGoogle Scholar
  40. Zeikus JG, Dawson MA, Thompson TE, Ingvorsen K, Hatchikian EC (1983) Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfotobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129:1159–1169Google Scholar
  41. Zhao W, Zhang CL, Romanek CS, Wiegel J (2008) Description of Caldalkalibacillus uzonensis sp. nov. and amended description of the genus Caldalkalibacillus. Int J Syst Evol Microbiol 58:1106–1108CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Nadia Khelifi
    • 1
    • 2
  • Emna Ben Romdhane
    • 1
    • 2
  • Abdeljabbar Hedi
    • 1
  • Anne Postec
    • 1
  • Marie-Laure Fardeau
    • 1
  • Moktar Hamdi
    • 2
  • Jean-Luc Tholozan
    • 1
  • Bernard Ollivier
    • 1
  • Agnès Hirschler-Réa
    • 1
    Email author
  1. 1.Laboratoire de Microbiologie et Biotechnologie des Environnements Chauds, UMR_D180, IRDUniversités de Provence et de la Méditerranée, ESILMarseille Cedex 9France
  2. 2.Laboratoire d’Ecologie et de Technologie MicrobienneInstitut National des Sciences Appliquées et de Technologie, Centre Urbain NordTunis CedexTunisia

Personalised recommendations