, Volume 14, Issue 3, pp 273–285 | Cite as

A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization

  • Rami Al Khudary
  • Ramprasath Venkatachalam
  • Moritz Katzer
  • Skander Elleuche
  • Garabed AntranikianEmail author
Original Paper


A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all α/β hydrolases (G × S × G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser106, Asp196, and His225. Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25°C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40°C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90°C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C2–C8).


Esterase Psychrophilic enzyme Pseudoalteromonas arctica OsmC 



R. A. K. received a scholarship from the DAAD (Deutscher Akademischer Austausch Dienst).


  1. Al Khudary R, Stösser NI, Qoura F, Antranikian G (2008) Pseudoalteromonas arctica sp. nov., an aerobic, psychrotolerant, marine bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 58:2018–2024CrossRefPubMedGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  3. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183CrossRefPubMedGoogle Scholar
  4. Arpigny JL, Feller G, Gerday C (1993) Cloning, sequence and structural features of a lipase from the antarctic facultative psychrophile Psychrobacter immobilis B10. Biochim Biophys Acta 1171:331–333PubMedGoogle Scholar
  5. Arpigny JL, Jendrossek D, Jaeger KE (1998) A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol Lett 167:69–73CrossRefPubMedGoogle Scholar
  6. Atichartpongkul S, Loprasert S, Vattanaviboon P, Whangsuk W, Helmann JD, Mongkolsuk S (2001) Bacterial Ohr and OsmC paralogues define two protein families with distinct functions and patterns of expression. Microbiology 147:1775–1782PubMedGoogle Scholar
  7. Bornscheuer UT (2002) Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 26:73–81CrossRefPubMedGoogle Scholar
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  9. Brenner S (1988) The molecular evolution of genes and proteins: a tale of two serines. Nature 334:528–530CrossRefPubMedGoogle Scholar
  10. Britton HTK, Robinson RA (1931) CXCVIII.—Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 458:1456–1462Google Scholar
  11. Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45CrossRefPubMedGoogle Scholar
  12. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261CrossRefPubMedGoogle Scholar
  13. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11–1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491PubMedGoogle Scholar
  14. Cieslinski H, Bialkowska AM, Dlugolecka A, Daroch M, Tkaczuk KL, Kalinowska H, Kur J, Turkiewicz (2007) A cold-adapted esterase from psychrotrophic Pseudoalteromas sp. strain 643A. Arch Microbiol 188:27–36CrossRefPubMedGoogle Scholar
  15. Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem 269:17448–17453PubMedGoogle Scholar
  16. de Pascale D, Cusano AM, Autore F, Parrilli E, di Prisco G, Marino G, Tutino ML (2008) The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12:311–323CrossRefPubMedGoogle Scholar
  17. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971CrossRefPubMedGoogle Scholar
  18. Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208CrossRefPubMedGoogle Scholar
  19. Ferrer M, Chernikova TN, Timmis KN, Golyshin PN (2004) Expression of a temperature-sensitive esterase in a novel chaperone-based Escherichia coli strain. Appl Environ Microbiol 70:4499–4504CrossRefPubMedGoogle Scholar
  20. Gerday C, Aittaleb M, Bentahir M, Chessa JP, Claverie P, Collins T, D`Amico S, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107CrossRefPubMedGoogle Scholar
  21. Gutierrez C, Devedjian JC (1991) Osmotic induction of gene osmC expression in Escherichia coli K12. J Mol Biol 220:959–973CrossRefPubMedGoogle Scholar
  22. Handrick R, Reinhardt S, Focarete ML, Scandola M, Adamus G, Kowalczuk M, Jendrossek D (2001) A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxyalkanoic acids. J Biol Chem 276:36215–36224CrossRefPubMedGoogle Scholar
  23. Heath C, Hu XP, Cary SC, Cowan D (2009) Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from antarctic desert soil. Appl Environ Microbiol 75:4657–4659CrossRefPubMedGoogle Scholar
  24. Hess M, Katzer M, Antranikian G (2008) Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 12:351–364CrossRefPubMedGoogle Scholar
  25. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351CrossRefPubMedGoogle Scholar
  26. Jenkins C, Geary SJ, Gladd M, Djordjevic SP (2007) The Mycoplasma gallisepticum OsmC-like protein MG1142 resides on the cell surface and binds heparin. Microbiology 153:1455–1463CrossRefPubMedGoogle Scholar
  27. Junge W, Krisch K (1973) Current problems on the structure and classification of mammalian liver carboxylesterases (EC Moll Cell Biochem 1:41–52CrossRefGoogle Scholar
  28. Kashima Y, Nakajima Y, Nakano T, Tayama K, Koizumi Y, Udaka S, Yanagida F (1999) Cloning and characterization of ethanol-regulated esterase genes in Acetobacter pasteurianus. J Biosci Bioeng 87:19–27CrossRefPubMedGoogle Scholar
  29. Kulakova L, Galkin A, Nakayama T, Nishino T, Esaki N (2004) Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly → Pro substitution near the active site on its catalytic activity and stability. Biochim Biophys Acta 1696:59–65PubMedGoogle Scholar
  30. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  31. Levisson M, van der Oost J, Kengen SW (2007) Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. FEBS J 274:2832–2842CrossRefPubMedGoogle Scholar
  32. Levisson M, van der Oost J, Kengen SW (2009) Carboxylic ester hydrolases from hyperthermophiles. Extremophiles 13:567–581CrossRefPubMedGoogle Scholar
  33. Liu P, Wang YF, Ewis HE, Abdelal AT, Lu CD, Harrison RW, Weber IT (2004) Covalent reaction intermediate revealed in crystal structure of the Geobacillus stearothermophilus carboxylesterase Est30. J Mol Biol 342:551–561CrossRefPubMedGoogle Scholar
  34. Ma J, Campbell A, Karlin S (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184:5733–5745CrossRefPubMedGoogle Scholar
  35. Margesin R, Shiner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33:1–14CrossRefGoogle Scholar
  36. Marx JC, Collins T, D’Amico S, Feller G, Gerday C (2007) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol 9:293–304CrossRefPubMedGoogle Scholar
  37. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405CrossRefPubMedGoogle Scholar
  38. Medigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335CrossRefPubMedGoogle Scholar
  39. Metin K, Burcu Bakir Ateslier Z, Basbulbul G, Halil Biyik H (2006) Characterization of esterase activity in Geobacillus sp. HBB-4. J Basic Microbiol 46:400–409CrossRefPubMedGoogle Scholar
  40. Nardini M, Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737CrossRefPubMedGoogle Scholar
  41. Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211CrossRefPubMedGoogle Scholar
  42. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169CrossRefPubMedGoogle Scholar
  43. Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR (2009) Solution behavior and activity of a halophilic esterase under high salt concentration. PLoS One 4:e6980CrossRefPubMedGoogle Scholar
  44. Rehse PH, Ohshima N, Nodake Y, Tahirov TH (2004) Crystallographic structure and biochemical analysis of the Thermus thermophilus osmotically inducible protein C. J Mol Biol 338:959–968CrossRefPubMedGoogle Scholar
  45. Rentier-Delrue F, Mande SC, Moyens S, Terpstra P, Mainfroid V, Goraij K, Lion M, Hol WG, Martial JA (1993) Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria. Structural comparison of the predicted protein sequences. J Mol Biol 229:85–93CrossRefPubMedGoogle Scholar
  46. Roh C, Villatte F (2008) Isolation of a low-temperature adapted lipolytic enzyme from uncultivated micro-organism. J Appl Microbiol 105:116–123CrossRefPubMedGoogle Scholar
  47. Royter M, Schmidt M, Elend C, Hobenreich H, Schäfer T, Bornscheuer UT, Antranikian G (2009) Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 13:769–783CrossRefPubMedGoogle Scholar
  48. Salameh MA, Wiegel J (2007) Purification and characterization of two highly thermophilic alkaline lipases from Thermosyntropha lipolytica. Appl Environ Microbiol 73:7725–7731CrossRefPubMedGoogle Scholar
  49. Sambrook J, Fritsch E, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New YorkGoogle Scholar
  50. Schmidt-Dannert C, Sztajer H, Stocklein W, Menge U, Schmid RD (1994) Screening, purification and properties of a thermophilic lipase from Bacillus thermocatenulatus. Biochim Biophys Acta 1214:43–53PubMedGoogle Scholar
  51. Shaw E, McCue LA, Lawrence CE, Dordick JS (2002) Identification of a novel class in the alpha/beta hydrolase fold superfamily: the N-myc differentiation-related proteins. Proteins 47:163–168CrossRefPubMedGoogle Scholar
  52. Siew N, Saini HK, Fischer D (2005) A putative novel alpha/beta hydrolase ORFan family in Bacillus. FEBS Lett 579:3175–3182CrossRefPubMedGoogle Scholar
  53. Suzuki T, Nakayama T, Kurihara T, Nishino T, Esaki N (2002) Primary structure and catalytic properties of a cold-active esterase from a psychrotroph, Acinetobacter sp. strain No. 6. isolated from Siberian soil. Biosci Biotechnol Biochem 66:1682–1690CrossRefPubMedGoogle Scholar
  54. Suzuki T, Nakayama T, Choo DW, Hirano Y, Kurihara T, Nishino T, Esaki N (2003) Cloning, heterologous expression, renaturation, and characterization of a cold-adapted esterase with unique primary structure from a psychrotroph Pseudomonas sp. strain B11-1. Protein Expr Purif 30:171–178CrossRefPubMedGoogle Scholar
  55. Whitaker JR (1972) Principles of enzymology for the food sciences. Marcel Dekker, New YorkGoogle Scholar
  56. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670PubMedGoogle Scholar
  57. Yang X, Lin X, Fan T, Bian J, Huang X (2008) Cloning and expression of lipP, a gene encoding a cold-adapted lipase from Moritella sp. 2-5-10-1. Curr Microbiol 56:194–198CrossRefPubMedGoogle Scholar
  58. Zimmer C, Platz T, Cadez N, Giffhorn F, Kohring GW (2006) A cold active (2R, 3R)-(−)-di-O-benzoyl-tartrate hydrolyzing esterase from Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 73:132–140CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Rami Al Khudary
    • 1
    • 2
  • Ramprasath Venkatachalam
    • 1
  • Moritz Katzer
    • 1
  • Skander Elleuche
    • 1
  • Garabed Antranikian
    • 1
    Email author
  1. 1.Institute of Technical MicrobiologyHamburg University of Technology (TUHH)HamburgGermany
  2. 2.American University of the Middle EastEgailaKuwait

Personalised recommendations