Advertisement

Extremophiles

, Volume 14, Issue 3, pp 241–247 | Cite as

Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes

  • Marie-Laure Fardeau
  • Vanessa Barsotti
  • Jean-Luc Cayol
  • Sophie Guasco
  • Valérie Michotey
  • Manon Joseph
  • Patricia Bonin
  • Bernard Ollivier
Original Paper

Abstract

A novel facultative microaerophilic nitrate-reducing bacterium designated CA62NT was isolated from a thermal spring in France. Cells were non-motile rods (2–3 × 0.2 μm) and showed low cytoplasmic density when observed under a phase-contrast microscope. Strain CA62NT grew at temperatures between 50 and 75°C (optimum 65°C) and at a pH between 6.3 and 7.9 (optimum 7.0). NaCl was not required for growth but was tolerated up to 10 gl−1. Sulfate, thiosulfate, elemental sulfur, sulfite, and nitrite were not used as electron acceptors. Nitrate was reduced to nitrite. Strain CA62NT used lactate, pyruvate, glucose, mannose, fructose, and casamino acids and some amino acids as electron donors only in the presence of nitrate as electron acceptor. None of these substrates was fermented. The main end-products of glucose oxidation were acetate, CO2, and traces of H2. The G + C content of the genomic DNA was 70.3 mol% (HPLC techniques). Phylogenetic analysis of the small-subunit (SSU) ribosomal RNA (rRNA) gene sequence indicated that strain CA62NT was affiliated to the Symbiobacterium branch within the Firmicutes and had Symbiobacterium thermophilum and “S. toebii” as its closest phylogenetic relatives. On the basis of phylogenetical and physiological characteristics, strain CA62NT is proposed to be the type strain for the novel species in the novel genus, Caldinitratiruptor microaerophilus gen. nov., sp. nov. (DSM 22660, JCM 16183).

Keywords

Caldinitratiruptor microaerophilus Thermophilic Microaerophilic Nitrate-reduction Hot spring 

Notes

Acknowledgments

Many thanks to the Mayor of Chaudes-Aigues for giving us access to hot springs and to Dr J.P.M. Euzéby for checking the etymology of genus and species names.

References

  1. Balch CM, Fox GE, Magrum RJ, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  2. Benson DA, Boguski MS, Lipman DJ, Ostell J, Ouellette BFF, Rapp BA, Wheeler D (1999) GenBank. Nucleic Acids Res 27:12–17CrossRefPubMedGoogle Scholar
  3. Beppu T, Ueda K (2009) Genus I. Symbiobacterium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman B (eds) The Firmicutes, vol 3, 2nd edn. Springer, Dordrecht, Heidelberg, London, New York, pp 1188–1190Google Scholar
  4. Bonilla Salinas M, Fardeau ML, Cayol JL, Casalot L, Patel BKC, Thomas P, Garcia JL, Ollivier B (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:645–649CrossRefGoogle Scholar
  5. Cord-Ruwisch R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36CrossRefGoogle Scholar
  6. Fardeau ML, Ollivier B, Patel BKC, Magot M, Thomas P, Rimbault A, Rocchiccioli F, Garcia JL (1997) Thermotoga hypogea sp. nov., a xylanolytic thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019CrossRefPubMedGoogle Scholar
  7. Fardeau M-L, Magot M, Patel BKC, Thomas P, Garcia JL, Ollivier B (2000) Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149PubMedGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Flanagan DA, Gregory LG, Carter JP, Karakas-Sen A, Richardson DJ, Spiro S (1999) Detection of genes for periplasmic nitrate reductase in nitrate-respiring bacteria and in community DNA. FEMS Microbiol Lett 177:263–270CrossRefPubMedGoogle Scholar
  10. Goregues CM, Michotey VD, Bonin PC (2005) Molecular, biochemical, and physiological approaches for understanding the ecology of denitrification. Microb Ecol 49:198–208CrossRefPubMedGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  12. Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657PubMedGoogle Scholar
  13. Hungate RE (1969) A roll tube method for the cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3B. Academic Press, New York, pp 117–132Google Scholar
  14. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  15. Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP II (Ribosomal database project). Nucleic Acids Res 29:173–174CrossRefPubMedGoogle Scholar
  16. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 139:159–167CrossRefGoogle Scholar
  17. Michotey V, Méjean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd (1)-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66:1564–1571CrossRefPubMedGoogle Scholar
  18. Ohno M, Shiratori H, Park MJ, Saitoh Y, Kumon Y, Yamashita N, Hirata A, Nishida H, Ueda K, Beppu T (2000) Symbiobacterium thermophilum gen. nov., sp. nov., a symbiotic thermophile that depends on co-culture with a Bacillus strain for growth. Int J Syst Evol Microbiol 50:1829–1832PubMedGoogle Scholar
  19. Rayney FA (2009) Order I. Clostridiales. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman B (eds) The Firmicutes, vol 3, 2nd edn. Springer, Dordrecht, p 736Google Scholar
  20. Rhee S-K, Jeon CO, Bae J-W, Jae Jun Song KK, Kim J-J, Lee S-G, Kim H-I, Hong S-P, Choi Y-H, Kim S-M, Hong S-P, Choi Y-H, Kim S-M, Sung M-H (2002) Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6:57–64CrossRefPubMedGoogle Scholar
  21. Rhuland LE, Work E, Denman RF, Hoare DS (1955) The behaviour of the isomers α, ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846CrossRefGoogle Scholar
  22. Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829CrossRefPubMedGoogle Scholar
  23. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712PubMedGoogle Scholar
  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425Google Scholar
  25. Stolz JF, Basu P (2002) Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBiochem 3:198–206CrossRefPubMedGoogle Scholar
  26. Sung MH, Bae JW, Kim JJ, Kim K, Song JJ, Rhee SK, Jeon CO, Choi YH, Hong SP, Lee SG, Ha JS, Kang GT (2003) Symbiobacterium toebii sp. nov., a commensal thermophile isolated from Korean compost. J Microbiol Biotechnol 13:1013–1017Google Scholar
  27. Suzuki S, Horinouchi S, Beppu T (1988) Growth of a tryptophanase-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependent on co-culture with a Bacillus sp. J Gen Microbiol 134:2353–2362Google Scholar
  28. Ueda K, Yamashita A, Ishikawa J, Shimada M, Watsuji T-O, Morimura K, Ikeda H, Hattori M, Beppu T (2004) Growth of a tryptophanase-producing thermophile, Symbiobacterium thermophilum gen. nov., sp. nov., is dependent on co-culture with a Bacillus sp. Nucl Acid Res 32:4937–4944CrossRefGoogle Scholar
  29. Wagner ID, Wiegel J (2008) Diversity of thermophilic anaerobes. Ann N Y Acad Sci 1125:1–43CrossRefPubMedGoogle Scholar
  30. Widdel F, Bak F (1992) Gram negative mesophilic sulfate-reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook of bacteria: ecophysiology, identification, applications, vol 4, 2nd edn. Springer, New York, pp 3352–3378Google Scholar
  31. Wiegel J (2009) Order III. Thermoanaerobacterales. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman B (eds) The Firmicutes, vol 3, 2nd edn. Springer, Dordrecht, p 1224Google Scholar
  32. Zehr JP, McReynolds LA (1989) Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 55:2522–2526PubMedGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  • Marie-Laure Fardeau
    • 1
  • Vanessa Barsotti
    • 1
  • Jean-Luc Cayol
    • 1
  • Sophie Guasco
    • 2
  • Valérie Michotey
    • 2
  • Manon Joseph
    • 1
  • Patricia Bonin
    • 2
  • Bernard Ollivier
    • 1
  1. 1.Laboratoire de Microbiologie IRD, UMR 180, Universités de Provence et de la MéditerranéeMarseille Cedex 9France
  2. 2.LMGEM, UMR6117, Centre d’Océanologie de MarseilleMarseille Cedex 9France

Personalised recommendations