Extremophiles

, Volume 14, Issue 1, pp 61–69 | Cite as

Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov.

  • Jennifer Loveland-Curtze
  • Vanya Miteva
  • Jean Brenchley
Original Paper

Abstract

Three novel orange, ultramicrobacterial isolates, UMB10, UMB14, and UMB34T were isolated from enrichment cultures inoculated with a melted 3,043 m deep Greenland ice core sample. Phylogenetic analysis of the 16S rRNA gene sequences indicated that the isolates belonged to a single species within the genus Chryseobacterium. They were most closely related to Chryseobacterium aquaticum (99.3%), Chryseobacterium soli (97.1%), and Chryseobacterium soldanellicola (96.9%). Genomic hybridization showed low levels of relatedness between UMB34T and C. aquaticum and C. soldanellicola (19–30%) and C. soli and Chryseobacterium jejuense (45–56%). Comparative genomic fingerprinting analysis using the enterobacterial repetitive intergenic consensus (ERIC) sequence showed nearly identical banding patterns for the three isolates and these patterns were distinct from those of C. aquaticum, C. soldanellicola, C. soli, and C. jejuense. The cells were short rods, lacked flagella, had cell volumes of <0.1 μm3, formed buds and smaller protrusions (blebs), produced copious extracellular material and a flexirubin type pigment. UMB34T produced acids from carbohydrates and utilized glucose and maltose although it did not assimilate mannose. The DNA G + C was 39.6–41.6 mol%. Based on the differences from validly named Chryseobacterium species, it was concluded that these isolates represent a new species for which the name, Chryseobacterium greenlandense is proposed. The type strain is UMB34T (=CIP 110007T = NRRL B-59357).

Keywords

Chryseobacterium greenlandense Flavobacteriaceae Ultramicrobacteria Glacial isolates Ice core 

References

  1. Bernardet J-F, Nakagawa Y (2006) An introduction to the family Flavobacteriaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 7. Springer, New York, pp 455–480CrossRefGoogle Scholar
  2. Bernardet J-F, Nakagawa Y, Holmes B (2002) Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070CrossRefPubMedGoogle Scholar
  3. Bernardet J-F, Vancanneyt M, Matte-Tailliez O, Grisez L, Tailliez P, Bizet C, Nowakowski M, Kerouault B, Swings J (2005) Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 28:640–660CrossRefPubMedGoogle Scholar
  4. Bernardet J-F, Hugo C, Bruun B (2006) The genera Chryseobacterium and Elizabethkingia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 7. Springer, New York, pp 638–676CrossRefGoogle Scholar
  5. Campbell LL, Williams OB (1951) A study of chitin-decomposing micro-organisms of marine origin. J Gen Microbiol 5:894–905PubMedGoogle Scholar
  6. Campbell S, Harada RM, Li QX (2008) Chryseobacterium arothri sp. nov., isolated from the kidneys of a pufferfish. Int J Syst Evol Microbiol 58:290–293CrossRefPubMedGoogle Scholar
  7. Cavicchioli R, Ostrowski M (2003) Ultramicrobacteria. In: Encyclopedia of life sciences. Macmillan Publishers Ltd., Nature Publishing Group, London. http://www.els.net
  8. Cowan DA, Tow LA (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690CrossRefPubMedGoogle Scholar
  9. de Beer H, Hugo CJ, Jooste PJ, Vancanneyt M, Coenye T, Vandamme P (2006) Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56:1317–1322CrossRefPubMedGoogle Scholar
  10. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefPubMedGoogle Scholar
  11. de Prada P, Loveland-Curtze J, Brenchley JE (1996) Production of two extracellular alkaline phosphatases by a psychrophilic Arthrobacter strain. Appl Environ Microbiol 62:3732–3738PubMedGoogle Scholar
  12. Gonzalez JM, Saiz-Jimenez C (2002) A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4:770–773CrossRefPubMedGoogle Scholar
  13. Herzog P, Winkler I, Wolking D, Kämpfer P, Lipski A (2008) Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini, sp. nov., Chryseobacterium pallidum sp. nov., and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58:26–33CrossRefPubMedGoogle Scholar
  14. Holmes B, Owen RJ, McMeekin TA (1984) Genus Flavobacterium Bergey, Harrison, Breed, Hammer and Huntoon 1923, 97 AL. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 353–361Google Scholar
  15. Janssen PH, Schuhmann A, Mörschel E, Rainey FA (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388PubMedGoogle Scholar
  16. Kaiser D (2007) Bacterial swarming: a re-examination of cell-movement patterns. Curr Biol 17:R561–R570CrossRefPubMedGoogle Scholar
  17. Kämpfer P, Lodders N, Vaneechoutte M, Wauters G (2009a) Transfer of Sejongia antarctica, Sejongia jeonii, and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov. Int J Syst Evol Microbiol 59:2238–2240CrossRefPubMedGoogle Scholar
  18. Kämpfer P, Vaneechoutte M, Wauters G (2009b) Chryseobacterium arothri Campbell et al. 2008 is a later heterotypic synonym of Chryseobacterium hominis Vaneechoutte et al. 2007. Int J Syst Evol Microbiol 59:695–697CrossRefPubMedGoogle Scholar
  19. Kim KK, Lee KC, Oh H-M, Lee J-S (2008) Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58:533–537CrossRefPubMedGoogle Scholar
  20. Lee K, Lee HK, Choi T-H, Cho J-C (2007) Sejongia marina sp. nov., isolated from Antarctic seawater. Int J Syst Evol Microbiol 57:2917–2921CrossRefPubMedGoogle Scholar
  21. Liu J, McBride MJ, Subramaniam S (2007) Cell surface filaments of the gliding bacterium Flavobacterium johnsoniae revealed by cryo-electron tomography. J Bacteriol 189:7503–7506CrossRefPubMedGoogle Scholar
  22. Margesin R (2009) Effect of temperature on growth parameters of psychrophilic bacteria and yeasts. Extremophiles 13:257–262CrossRefPubMedGoogle Scholar
  23. Mashburn-Warren L, Mclean RJC, Whiteley M (2008) Gram-negative outer membrane. Vesicles: beyond the cell surface. Geobiology 6:214–219CrossRefPubMedGoogle Scholar
  24. Michel C, Matte-Tailliez O, Kerouault B, Bernardet J-F (2005) Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol 99:323–332CrossRefPubMedGoogle Scholar
  25. Miteva V (2008) Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx J-C, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 31–50CrossRefGoogle Scholar
  26. Miteva VI, Brenchley JE (2005) Detection and isolation of ultrasmall microorganisms from a 120, 000-year-old Greenland glacier ice core. Appl Environ Microbiol 71:7806–7818CrossRefPubMedGoogle Scholar
  27. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213CrossRefPubMedGoogle Scholar
  28. Mudarris M, Austin B, Segers P, Vancanneyt M, Hoste B, Bernardet J-F (1994) Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 44:447–453PubMedGoogle Scholar
  29. Nedashkovskaya OI, Kim SB, Vancanneyt M, Snauwaert C, Lysenko AM, Rohde M, Frolova GM, Zhukova NV, Mikhailov VV, Bae KS, Oh HW, Swings J (2006) Formosa agariphila sp. nov., a budding bacterium of the family Flavobacteriaceae isolated from marine environments, and emended description of the genus Formosa. Int J Syst Evol Microbiol 56:161–167CrossRefPubMedGoogle Scholar
  30. Park MS, Jung SR, Lee KH, Lee M-S, Do JO, Kim SB, Bae KS (2006) Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438CrossRefPubMedGoogle Scholar
  31. Priscu JC, Christner BC (2004) Earth’s icy bioshpere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 130–145Google Scholar
  32. Priscu JC, Christner BC, Foreman CM, Royston-Bishop G (2007) Biological material in ice cores. In: Elias SA (ed) Encyclopedia of quaternary sciences. Elsevier, Amsterdam, p 1156–1167Google Scholar
  33. Sheridan PP, Loveland-Curtze J, Miteva VI, Brenchley JE (2003a) Rhodoglobus vestalii gen. nov. sp. nov., a novel psychrophilic organism isolated from an Antarctic Dry Valley lake. Int J Syst Evol Microbiol 53:985–994CrossRefPubMedGoogle Scholar
  34. Sheridan PP, Miteva VI, Brenchley JE (2003b) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160CrossRefPubMedGoogle Scholar
  35. Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington D.C., pp 409–443Google Scholar
  36. Sokol PA, Ohman DE, Iglewski BH (1979) A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J Clin Microbiol 9:538–540PubMedGoogle Scholar
  37. Swofford DL (2002) PAUP* Phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer Associates, SunderlandGoogle Scholar
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface:flexible startegies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25:4876–4882CrossRefPubMedGoogle Scholar
  39. Vandamme P, Bernardet J-F, Segers P, Kersters K, Holmes B (1994) New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen.nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831CrossRefGoogle Scholar
  40. Vandamme P, Hafez HM, Hinz KH (2006) Capnophilic bird pathogens in the family Flavobacteriaceae: Riemerella, Ornithobacterium and Coenonia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 7. Springer, New York, pp 695–708CrossRefGoogle Scholar
  41. Weon H-Y, Kim B-Y, Yoo S-H, Kwon S-W, Stackebrandt E, Go S-J (2008) Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58:470–473CrossRefPubMedGoogle Scholar
  42. Yi H, Yoon HI, Chun J (2005) Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55:409–416CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Jennifer Loveland-Curtze
    • 1
  • Vanya Miteva
    • 1
  • Jean Brenchley
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations