, Volume 13, Issue 4, pp 583–594 | Cite as

Cultivating the uncultured: limits, advances and future challenges

  • Karine Alain
  • Joël Querellou


Since the invention of the Petri dish, there have been continuous efforts to improve efficiency in microbial cultivation. These efforts were devoted to the attainment for diverse growth conditions, simulation of in situ conditions and achievement of high-throughput rates. As a result, prokaryotes catalysing novel redox reactions as well as representatives of abundant, but not-yet cultured taxa, were isolated. Significant insights into microbial physiology have been made by studying the small number of prokaryotes already cultured. However, despite these numerous breakthroughs, microbial cultivation is still a low-throughput process. The main hindrance to cultivation is likely due to the prevailing lack of knowledge on targeted species. In this review, we focus on the limiting factors surrounding cultivation. We discuss several cultivation obstacles, including the loss of microbial cell–cell communication following species isolation. Future research directions, including the refinement of culture media, strategies based on cell–cell communication and high-throughput innovations, are reviewed. We further propose that a combination of these approaches is urgently required to promote cultivation of uncultured species, thereby dawning a new era in the field.


Culture Isolation Metabolism Microbial community Cell–cell communication High-throughput cultivation 



This work was funded by the Région Bretagne for the CPER Souchothèque and the joint research unit UMR6197, linking the Université de Bretagne Occidentale, the Ifremer and the Centre National de la Recherche Scientifique. We thank Stéphane L’Haridon for constructive discussions and critical reading of this manuscript.


  1. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:31–440CrossRefGoogle Scholar
  2. Akselband Y, Cabral C, Castor TP, Chikarmane HM, Mc Grath P (2006) Enrichment of slow-growing marine microorganisms from mixed cultures using gel microdrop (GMD) growth assay and fluorescence-activated cell sorting. J Exp Mar Biol Ecol 329:196–205CrossRefGoogle Scholar
  3. Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien J-L (2002) Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339PubMedCrossRefGoogle Scholar
  4. Alain K, Zbinden M, Le Bris N, Lesongeur F, Querellou J, Gaill F, Cambon-Bonavita M-A (2004) Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6:227–241PubMedCrossRefGoogle Scholar
  5. Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  6. Araki N, Ohashi A, Machdar I, Harada H (1999) Behaviors of nitrifiers in a novel biofilm reactor employing hanging sponge cubes as attachment sites. Water Sci Technol 39:23–31Google Scholar
  7. Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390PubMedCrossRefGoogle Scholar
  8. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489PubMedCrossRefGoogle Scholar
  9. Bruns A, Cypionka H, Overmann J (2002) Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from the central Baltic Sea. Appl Environ Microbiol 68:3978–3987PubMedCrossRefGoogle Scholar
  10. Bruns A, Nübel U, Cypionka H, Overmann J (2003) Effect of signal compounds and incubation conditions on the culturability of freshwater bacterioplankton. Appl Environ Microbiol 69:1980–1989PubMedCrossRefGoogle Scholar
  11. Button DK, Schut F, Quang P, Martin R, Robertson BR (1993) Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl Environ Microbiol 59:881–891PubMedGoogle Scholar
  12. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116PubMedCrossRefGoogle Scholar
  13. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043PubMedCrossRefGoogle Scholar
  14. Connon SA, Giovannoni SJ (2002) High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new many isolates. Appl Environ Microbiol 68:3878–3885PubMedCrossRefGoogle Scholar
  15. Crocetti GR, Banfield JF, Keller J, Bond PL, Blackall LL (2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology 148:3353–3364PubMedGoogle Scholar
  16. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499PubMedCrossRefGoogle Scholar
  17. Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834PubMedCrossRefGoogle Scholar
  18. Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792PubMedGoogle Scholar
  19. Ferrari B, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720PubMedCrossRefGoogle Scholar
  20. Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269PubMedCrossRefGoogle Scholar
  21. Flagan S, Ching W-K, Leadbetter JR (2003) Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl Environ Microbiol 69:909–916PubMedCrossRefGoogle Scholar
  22. Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells. FEMS Microbiol Rev 24:567–572PubMedCrossRefGoogle Scholar
  23. Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulfate-reducing bacterium. Environ Microbiol 1:415–420PubMedCrossRefGoogle Scholar
  24. Gefen O, Balaban NQ (2008) The Moore’s law of microbiology—towards bacterial culture miniaturization with the micro-Petri chip. Trends Biotechnol 26:345–347PubMedCrossRefGoogle Scholar
  25. Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the ‘omics’ age. Nat Rev Microbiol 5:820–826PubMedCrossRefGoogle Scholar
  26. Hooshanghi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555CrossRefGoogle Scholar
  27. Houghton JL, Seyfried WE Jr, Banta AB, Reysenbach A-L (2007) Continuous enrichment culturing of thermophiles under sulfate and nitrate-reducing conditions and at deep-sea hydrostatic pressures. Extremophiles 11:371–382PubMedCrossRefGoogle Scholar
  28. Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58PubMedCrossRefGoogle Scholar
  29. Huber R, Huber H, Stetter KO (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol Rev 24:615–623PubMedCrossRefGoogle Scholar
  30. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  31. Hugenholtz P, Tyson GW (2008) Metagenomics. Nature 455:481–483PubMedCrossRefGoogle Scholar
  32. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedGoogle Scholar
  33. Hughes DT, Sperandio V (2008) Inter-kingdom signaling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120PubMedCrossRefGoogle Scholar
  34. Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylckama Vlieg JET, de Vos WM (2007) The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA 104(46):18217–18222PubMedCrossRefGoogle Scholar
  35. Janssen PH, Schuhmann A, Mörschel E, Rainey FA (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388PubMedGoogle Scholar
  36. Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215PubMedCrossRefGoogle Scholar
  37. Kaeberlein T, Lewis K, Epstein SS (2002) Isolating uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129PubMedCrossRefGoogle Scholar
  38. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4:249–258PubMedCrossRefGoogle Scholar
  39. Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420PubMedCrossRefGoogle Scholar
  40. Kolodkin-Gal I, Engelberg-Kulka H (2008) The extracellular death factor: physiological and genetic factors influencing its production and response in Escherichia coli. J Bacteriol 190:3169–3175PubMedCrossRefGoogle Scholar
  41. Kolodkin-Gal I, Hazan R, Gaathon A, Carmeli S, Engelberg-Kulka H (2007) A linear penta-peptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318:652–655PubMedCrossRefGoogle Scholar
  42. Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546PubMedCrossRefGoogle Scholar
  43. Köpke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microbiol 71:7819–7830PubMedCrossRefGoogle Scholar
  44. Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281PubMedCrossRefGoogle Scholar
  45. Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689PubMedCrossRefGoogle Scholar
  46. Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA (2001) Nitrogen fixation by symbiotic and free-living spirochetes. Science 292:2495–2498PubMedCrossRefGoogle Scholar
  47. Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864PubMedGoogle Scholar
  48. Marteinsson VT, Birrien J-L, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359PubMedGoogle Scholar
  49. Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14PubMedCrossRefGoogle Scholar
  50. Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224PubMedCrossRefGoogle Scholar
  51. Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in a sediment from a marine gas hydrate area. Environ Microbiol 4:296–305PubMedCrossRefGoogle Scholar
  52. Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269CrossRefGoogle Scholar
  53. Overmann J (2006) Principles of enrichment, isolation, cultivation and preservation of prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, Third edn. Springer, New York, pp 80–136Google Scholar
  54. Pereira CS, Mc Auley JR, Taga ME, Xavier KB, Miller ST (2008) Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria. Mol Microbiol 70:1223–1235PubMedCrossRefGoogle Scholar
  55. Pignatelli M, Aparicio G, Blanquer I, Hernandez V, Moya A, Tamames J (2008) Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 24:2124–2125PubMedCrossRefGoogle Scholar
  56. Plugge CM, Stams AJM (2002) Enrichment of thermophilic syntrophic anaerobic glutamate-degrading consortia using a dialysis membrane reactor. Microbial Ecol 43:379–387CrossRefGoogle Scholar
  57. Pörtner R, Märkl H (1998) Dialysis cultures. Appl Microbiol Biotechnol 50:403–414PubMedCrossRefGoogle Scholar
  58. Postec A, Urios L, Lesongeur F, Ollivier B, Querellou J, Godfroy A (2005) Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems. Curr Microbiol 50:138–144PubMedCrossRefGoogle Scholar
  59. Postec A, Lesongeur F, Pignet P, Ollivier B, Querellou J, Godfroy A (2007) Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys. Extremophiles 11:747–757PubMedCrossRefGoogle Scholar
  60. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451PubMedGoogle Scholar
  61. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921PubMedCrossRefGoogle Scholar
  62. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633PubMedCrossRefGoogle Scholar
  63. Ryan RP, Dow JM (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858PubMedCrossRefGoogle Scholar
  64. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666PubMedCrossRefGoogle Scholar
  65. Sangwan P, Kovac S, Davis KER, Sait M, Janssen PH (2005) Detection and cultivation of soil Verrucomicrobia. Appl Environ Microbiol 71:8402–8410PubMedCrossRefGoogle Scholar
  66. Schink B (1999) Ecophysiology and ecological niches of prokaryotes. In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Georg Thieme Verlag, Stuttgart, pp 723–762Google Scholar
  67. Schink B, Friedrich M (2000) Phosphite oxidation by sulphate reduction. Nature 406:37PubMedCrossRefGoogle Scholar
  68. Skinner FA, Jones PCT, Mollison JE (1952) A comparison of a direct- and a plate-counting technique for the quantitative estimation of soil microorganisms. J Gen Microbiol 6:261–271PubMedGoogle Scholar
  69. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346PubMedCrossRefGoogle Scholar
  70. Stevenson BS, Eichorst SA, Wertz JT, Schmidt TM, Breznak JA (2004) New strategies for cultivation and detection of previously uncultured microbes. Appl Environ Microbiol 70:4748–4755PubMedCrossRefGoogle Scholar
  71. Stingl U, Tripp HJ, Giovannoni SJ (2007) Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic time series study site. ISME J 1:361–371PubMedGoogle Scholar
  72. Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF (2008) Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand. Environ Microbiol 10:2030–2041PubMedCrossRefGoogle Scholar
  73. Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169PubMedCrossRefGoogle Scholar
  74. Uphoff HU, Felske A, Fehr W, Wagner-Döbler I (2001) The microbial diversity in picoplankton enrichment cultures: a molecular screening of marine isolates. FEMS Microbiol Ecol 35:249–258PubMedCrossRefGoogle Scholar
  75. Watve M, Shejval V, Sonawane C, Rahalkar M, Matapurkar A, Shouche Y, Patole M, Phadnis N, Champhenkar A, Damle K, Karandikar S, Kshirsagar V, Jog M (2000) The ‘K’ selected oligophilic bacteria: a key to uncultured diversity? Curr Sci 78:1535–1542Google Scholar
  76. West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of microbes. Annu Rev Ecol Evol Syst 38:53–77CrossRefGoogle Scholar
  77. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  78. Widdel F, Musat F, Knittel K, Galushko A (2007) Anaerobic degradation of hydrocarbons with sulphate as electron acceptor. In: Barton LL, Hamilton WA (eds) Sulphate-reducing bacteria: environmental and engineered systems, chapter 9. Cambridge University Press, Cambridge, pp 265–303Google Scholar
  79. Yasumoto-Hirose M, Nishijima M, Ngirchechol MK, Kanoh K, Shizuri Y, Miki W (2006) Isolation of marine bacteria by in situ culture on media-supplemented polyurethane foam. Mar Biotechnol 8:227–237PubMedCrossRefGoogle Scholar
  80. Yayanos AA, Dietz AS, Van Boxtel R (1979) Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205:808–810PubMedCrossRefGoogle Scholar
  81. Yayanos AA, Dietz AS, Van Boxtel R (1981) Obligately barophilic bacterium from the Mariana trench. Proc Natl Acad Sci USA 78:5212–5215PubMedCrossRefGoogle Scholar
  82. Zeng X, Birrien J-L, Fouquet Y, Cherkashov G, Jebbar M, Querellou J, Oger P, Cambon-Bonavita M-A, Xiao X, Prieur D (2009) Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life. ISME J (in press). doi: 10.1038/ismej.2009.21
  83. Zengler K, Richnow HH, Rossello-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269PubMedCrossRefGoogle Scholar
  84. Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci USA 99:15681–15686PubMedCrossRefGoogle Scholar
  85. Zengler K, Walcher M, Clark G, Haller I, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M (2005) High-throughput cultivation of microorganisms using microcapsules. Methods Enzymol 397:124–130PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.UMR6197, Laboratoire de Microbiologie des Environnements ExtrêmesIUEM, Technopôle Brest-IroisePlouzanéFrance
  2. 2.UMR6197, Laboratoire de Microbiologie des Environnements ExtrêmesIfremer, Centre de Brest, Pointe du diablePlouzanéFrance

Personalised recommendations