, Volume 13, Issue 3, pp 521–531 | Cite as

Tolerance of thermophilic and hyperthermophilic microorganisms to desiccation

  • Kristina BebloEmail author
  • Elke Rabbow
  • Reinhard Rachel
  • Harald Huber
  • Petra Rettberg
Original Paper


We examined short- and long-term desiccation tolerance of 31 strains of thermophilic and hyperthermophilic Archaea and thermophilic phylogenetically deep-branching Bacteria. Seventeen organisms showed a significant high ability to withstand desiccation. The desiccation tolerance turned out to be species-specific and was influenced by several parameters such as storage temperature, pH, substrate or presence of oxygen. All organisms showed a higher survival rate at low storage temperatures (−20°C or below) than at room temperature. Anaerobic and microaerophilic strains are influenced negatively in their survival by the presence of oxygen during desiccation and storage. The desiccation tolerance of Sulfolobales strains is co-influenced by the pH and the substrate of the pre-culture. The distribution of desiccation tolerance in the phylogenetic tree of life is not domain specific. Surprisingly, there are dramatic differences in desiccation tolerance among organisms from the same order and even from closely related strains of the same genus. Our results show that tolerance of vegetative cells to desiccation is a common phenomenon of thermophilic and hyperthermophilic microorganisms although they originated from quite different non-arid habitats like boiling acidic springs or black smoker chimneys.


Desiccation Tolerance Survival Hyperthermophilic Archaea 



We want to thank Kerstin Roth for performing desiccation experiments with Metallosphaera sedula and Dr. Guenther Reitz, Head of Radiation Biology Department at German Aerospace Center (DLR), for ongoing support.


  1. American Public Health Association (1972) Methods for the examination of water and wastewater, 14th edn. American Public Health Association, Washington, DCGoogle Scholar
  2. Anderson AW, Nordan HC, Cain RF, Parrish G, Duggan DE (1956) Studies on a radiation-resistant micrococcus. Isolation, morphology, cultural characteristics and resistance of γ-radiation. Food Technol 10:575–577Google Scholar
  3. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of al unique biological group. Microbiol Rev 43:260–296PubMedGoogle Scholar
  4. Barker HA (1936) Studies upon the methane-producing bacteria. Arch Microbiol 7:420–438Google Scholar
  5. Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Mol Biol Rev 49:359–378Google Scholar
  6. Brioukhanov A, Netrusov A, Sordel M, Thauer RK, Shima S (2000) Protection of Methanosarcina barkeri against oxidative stress: identification and characterization of an iron superoxide dismutase. Arch Microbiol 174:213–216PubMedCrossRefGoogle Scholar
  7. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New YorkGoogle Scholar
  8. Burghardt T, Saller M, Guerster S, Mueller D, Meyer C, Jahn U, Hochmuth E, Deutzmann R, Siedler F, Babinger P, Wirth R, Huber H, Rachel R (2008) Insight into the proteome of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis: the major cytosolic and membrane proteins. Arch Microbiol 190:379–394PubMedCrossRefGoogle Scholar
  9. Chyba CF (2005) Rethinking Earth’s early atmosphere. Science 308:962–963PubMedCrossRefGoogle Scholar
  10. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SW, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:769–779CrossRefGoogle Scholar
  11. Darland G, Brock TD, Samsonoff W, Cont SF (1970) A thermophilic, acidophilic Mycoplasma isolated from a coal refuse pile. Science 170:1416–1418PubMedCrossRefGoogle Scholar
  12. Deckert G, Warren PV, Gaasterland T, Young WG, Lenox AL, Graham DE, Overbeek R, Snead MA, Keller M, Aujay M, Huber R, Feldman RA, Short JM, Olsen GJ, Swanson RV (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392:353–358PubMedCrossRefGoogle Scholar
  13. Di Giulio M (2000) The universal ancestor lives in a thermophilic or hyperthermophilic environment. J Theor Biol 203:203–213PubMedCrossRefGoogle Scholar
  14. Ditzel L, Loewe J, Stock D, Stetter KO, Huber H, Huber R, Steinbacher S (1998) Crystal structure of the thermosome, the archaeal chaperonin and homolog of CCT. Cell 93:125–138PubMedCrossRefGoogle Scholar
  15. Dose K, Bieger-Dose A, Labusch M, Gill M (1992) Survival in extreme dryness and DNA-single-strand breaks. Adv Space Res 12:221–229PubMedCrossRefGoogle Scholar
  16. Elferink MGL, De Wit JG, Driessen AJM, Konings WN (1994) Stability and proton- permeability of liposomes composed of archaeal tetraether lipids. Biochem Biophys Acta 1193:247–254PubMedCrossRefGoogle Scholar
  17. Fetzer S, Bak F, Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12:107–115CrossRefGoogle Scholar
  18. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145:56–61CrossRefGoogle Scholar
  19. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. respresents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C. Syst Appl Microbiol 8:106–113Google Scholar
  20. Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1996) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566Google Scholar
  21. Gest H, Mandelstam J (1987) Longevity of microorganisms in natural environments. Microbiol Sci 4:69–71PubMedGoogle Scholar
  22. Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105:5139–5144PubMedCrossRefGoogle Scholar
  23. Grogan DW (1989) Phenotypic characterization of the archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719PubMedGoogle Scholar
  24. Grogan DW (1998) Hyperthermophiles and the problem of DNA instability. Mol Microbiol 28:1043PubMedCrossRefGoogle Scholar
  25. Grogan DW (2000) The question of DNA-repair in hyperthermophilic archaea. Trends Microbiol 8:180–185PubMedCrossRefGoogle Scholar
  26. Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283PubMedCrossRefGoogle Scholar
  27. Holloman WK, Schirawski J, Holliday R (2007) Towards understanding the extreme radiation resistance of Ustilago maydis. Trends Microbiol 15:525–529PubMedCrossRefGoogle Scholar
  28. Horneck G, Buecker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:1041–1045Google Scholar
  29. Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547PubMedCrossRefGoogle Scholar
  30. Huber R, Eder W (2006) Aquificales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 925–938Google Scholar
  31. Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378Google Scholar
  32. Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacetophilic archaebacteria. Syst Appl Microbiol 12:38–47Google Scholar
  33. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, Koenig H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacterium. Syst Appl Microbiol 15:340–351Google Scholar
  34. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 64:3576–3583PubMedGoogle Scholar
  35. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100PubMedGoogle Scholar
  36. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002a) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  37. Huber H, Diller S, Horn C, Rachel R (2002b) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865PubMedCrossRefGoogle Scholar
  38. Huber H, Hohn MJ, Rachel R, Stetter KO (2006) Nanoarchaeota. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 274–280Google Scholar
  39. Jones W, Leigh J, Mayer F, Woese C, Wolfe R (1984) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  40. Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov. sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Evol Microbiol 34:5–10CrossRefGoogle Scholar
  41. Kendrick MG, Kral TA (2006) Survival of methanogens during desiccation: implications for life on Mars. Astrobiology 6:546–551PubMedCrossRefGoogle Scholar
  42. Kish A, Kirkali G, Robinson C, Rosenblatt R, Jaruga P, Dizdaroglu M, DiRuggiero J (2009) Salt shield: intracellular salts provide cellular protection against ionizing radiation in the halophilic archaeon, Halobacterium salinarum NRC-1. Environ Microbiol (published online)Google Scholar
  43. Kluyver AJ, Schnellen GTP (1947) Fermentation of carbon monoxide by pure cultures of methane bacteria. Arch Biochem 14:57–70PubMedGoogle Scholar
  44. Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227PubMedCrossRefGoogle Scholar
  45. Kurr M, Huber R, Koenig H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1992) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247CrossRefGoogle Scholar
  46. Luebben M, Schaefer G (1989) Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N, N′-dicyclohexylcarbodiimide-binding proteolipid. J Bacteriol 171:6106–6116Google Scholar
  47. Martins LO, Huber R, Huber H, Stetter KO, da Costa MS, Santos H (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63:896–902PubMedGoogle Scholar
  48. Mattimore V, Battista R (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 78:633–637Google Scholar
  49. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369PubMedCrossRefGoogle Scholar
  50. Melosh HJ (2003) Exchange of meteorites (and life?) between stellar systems. Astrobiology 3:207–215PubMedCrossRefGoogle Scholar
  51. Miyamoto-Shinohara Y, Imaizumi T, Sukenobe J, Murakami Y, Kawamura S, Komatsu Y (2000) Survival rate of microbes after freeze-drying and long-term storage. Cryobiology 41:251–255PubMedCrossRefGoogle Scholar
  52. Morozova D, Wagner D (2007) Stress response of methanogenic archaea from siberian permafrost compared with methanogens from non permafrost habitats. FEMS Microbiol Ecol 61:16–25PubMedCrossRefGoogle Scholar
  53. Nicholson WL, Munakata N, Horneck G, Melosh HL, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572PubMedCrossRefGoogle Scholar
  54. Nisbet EG, Sleep NH (2001) The habitat and nature of the early life. Nature 409:1083–1091PubMedCrossRefGoogle Scholar
  55. Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of Bacteria under conditions simulating the martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970PubMedCrossRefGoogle Scholar
  56. Paper W, Jahn U, Hohn M, Kronner M, Naether D, Burghardt T, Rachel R, Stetter KO, Huber H (2007) Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol 57:803–808PubMedCrossRefGoogle Scholar
  57. Phipps BM, Hoffmann A, Stetter KO, Baumeister W (1991) A novel ATPase complex selectively accumulated upon heat shock is a major cellular component of thermophilic archaebacteria. EMBO J 10:1711–1722PubMedGoogle Scholar
  58. Prestrelski SJ, Tedeschi N, Arakawa T, Carpentert JF (1993) Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J 65:661–671PubMedCrossRefGoogle Scholar
  59. Rettberg P, Pogoda de La Vega U, Horneck G (2004) Deinococcus radiodurans—a model organism for life under martian conditions. In: Proceedings of the third European workshop on exo-astrobiology, pp 59–62Google Scholar
  60. Romesser JA, Wolfe RS, Mayer F, Speiss E, Walther-Mauruschat A (1979) Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153CrossRefGoogle Scholar
  61. Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Koga Y, Hoaki T, Maruyama T (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C. Int J Syst Bacteriol 46:1070–1077PubMedCrossRefGoogle Scholar
  62. Segerer A, Longworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10:161–171Google Scholar
  63. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173Google Scholar
  64. Stetter KO (1996) Hyperthermophiles in the history of life. Ciba Found Symp 202:1–10PubMedGoogle Scholar
  65. Stetter KO, Koenig H, Stackebrandt E (1983) Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551Google Scholar
  66. Stoehr R, Waberski A, Liesack W, Voelker H, Wehmeyer U, Thomm M (2001a) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing β-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488Google Scholar
  67. Stoehr R, Waberski A, Voelker H, Tindall B, Thomm M (2001b) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862Google Scholar
  68. Takao M, Oikawa A, Yasui A (1990) Characterization of a superoxide dismutase gene from the archaebacterium Methanobacterium thermoautotrophicum. Arch Biochem Biophys 283:210–216PubMedCrossRefGoogle Scholar
  69. Voelkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926Google Scholar
  70. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Soell D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988PubMedCrossRefGoogle Scholar
  71. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic Bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes: a handbook on the biology of bacteria. Springer, New York, pp 165–207Google Scholar
  72. Zeikus J, Wolfe R (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713PubMedGoogle Scholar
  73. Zillig W, Stetter KO, Wunderl S, Schulz W, Priess H, Scholz J (1980) The Sulfolobus-“Caldariella” group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269CrossRefGoogle Scholar
  74. Zillig W, Stetter KO, Schaefer W, Janekovic D, Wunderl S, Holz J, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from icelandic solfataras. Zentralbl Bakteriol Mikrobiol Hyg I Abt C 2:205–227Google Scholar
  75. Zillig W, Gierl A, Schreiber G, Wunderl S, Janekovic D, Stetter KO, Klenk HP (1983) The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic sulfur respiring Thermoproteales. Syst Appl Microbiol 4:79–87Google Scholar
  76. ZoBell CE (1941) Studies on marine bacteria. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75Google Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Kristina Beblo
    • 1
    • 2
    Email author
  • Elke Rabbow
    • 1
  • Reinhard Rachel
    • 3
  • Harald Huber
    • 2
  • Petra Rettberg
    • 1
  1. 1.Radiation Biology DivisionGerman Aerospace Center (DLR e.V.), Institute of Aerospace MedicineCologneGermany
  2. 2.Faculty of Natural Sciences III, Institute for Microbiology and Archaea CenterUniversity of RegensburgRegensburgGermany
  3. 3.Faculty of Natural Sciences III, Center for Electron MicroscopyUniversity of RegensburgRegensburgGermany

Personalised recommendations