, Volume 13, Issue 2, pp 333–343 | Cite as

Recovery of ionizing-radiation damage after high doses of gamma ray in the hyperthermophilic archaeon Thermococcus gammatolerans

  • Angels Tapias
  • Christophe Leplat
  • Fabrice ConfalonieriEmail author
Original Paper


The recently discovered hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans is of great interest to compare and contrast the impact of its physiology on radioresistance and its ability to repair damaged chromosomes after exposure to gamma irradiation with radioresistant bacteria. We showed that, in contrast to other organisms, cell survival was not modified by the cellular growth phase under optimal growth conditions but nutrient-limited conditions did affect the T. gammatolerans radioresistance. We determined the first kinetics of damaged DNA recovery in an archaeon after exposure to massive doses of gamma irradiation and compared the efficiency of chromosomal DNA repair according to the cellular growth phase, nutrient availability and culture conditions. Chromosomal DNA repair kinetics showed that stationary phase cells reconstitute disrupted chromosomes more rapidly than exponential phase cells. Our data also revealed that this radioresistant archaeon was proficient to reconstitute shattered chromosomes either slowly or rapidly without any loss of viability. These results suggest that rapid DNA repair is not required for the extreme radioresistance of T. gammatolerans.


Thermococcus gammatolerans Archaea Hyperthermophile Radioresistance DNA repair kinetics 



The LGA laboratory is supported by the CNRS and the Université Paris-Sud XI. A. Tapias was the recipient of an ATER-Université Paris-Sud XI position in Molecular Biology. C. Leplat is supported by a doctoral fellowship of the Ecole Doctorale GCDE Paris- Sud XI. Authors are specially grateful to J. Battista (Lousiana State University, USA) for fruitful discussions. We thank P. Forterre and E. Marguet for their help in the use of the anaerobic chamber and M. DuBow for help with English. We also thank G. Baldacci and V. Favaudon (Institut Curie, Orsay) for access to the Cs137 Gamma irradiation source. Authors are grateful to anonymous reviewers for their questions and suggestions to improve the quality of the manuscript.


  1. Bala M, Jain V (1996) 2-DG induced modulation of chromosomal DNA profile, cell survival, mutagenesis and gene conversion in X-irradiated yeast. Indian J Exp Biol 34:18–26PubMedGoogle Scholar
  2. Battista JR (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224PubMedCrossRefGoogle Scholar
  3. Bentchikou E, Servant P, Coste G, Sommer S (2007) Additive effects of SbcCD and PolX deficiencies in the in vivo repair of DNA double-strand breaks in Deinococcus radiodurans. J Bacteriol 189:4784–4790PubMedCrossRefGoogle Scholar
  4. Bernander R (2003) The archaeal cell cycle: current issues. Mol Microbiol 48:599–604PubMedCrossRefGoogle Scholar
  5. Breuert S, Allers T, Spohn G, Soppa J (2006) Regulated polyploidy in halophilic archaea. PLoS ONE 1:e92PubMedCrossRefGoogle Scholar
  6. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Venkateswaran A, Hess M, Omelchenko MV, Kostandarithes HM, Makarova KS, Wackett LP, Fredrickson JK, Ghosal D (2004) Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance. Science 306:1025–1028PubMedCrossRefGoogle Scholar
  7. Daly MJ, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Leapman RD, Lai B, Ravel B, Li SM, Kemner KM, Fredrickson JK (2007) Protein oxidation implicated as the primary determinant of bacterial radioresistance. PLoS Biol 5:e92PubMedCrossRefGoogle Scholar
  8. de Groot A, Chapon V, Servant P, Christen R, Saux MF, Sommer S, Heulin T (2005) Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446PubMedCrossRefGoogle Scholar
  9. Dinger ME, Baillie GJ, Musgrave DR (2000) Growth phase-dependent expression and degradation of histones in the thermophilic archaeon Thermococcus zilligii. Mol Microbiol 36:876–885PubMedCrossRefGoogle Scholar
  10. Dion P, Charbonneau R, Thibault C (1994) Effect of ionizing dose rate on the radioresistance of some food pathogenic bacteria. Can J Microbiol 40:369–374PubMedCrossRefGoogle Scholar
  11. DiRuggiero J, Santangelo N, Nackerdien Z, Ravel J, Robb FT (1997) Repair of extensive ionizing radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 179:4643–4645PubMedGoogle Scholar
  12. Gerard E, Jolivet E, Prieur D, Forterre P (2001) DNA protection mechanisms are not involved in the radioresistance of the hyperthermophilic archaea Pyrococcus abyssi and P. furiosus. Mol Genet Genomics 266:72–78PubMedCrossRefGoogle Scholar
  13. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003a) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851PubMedCrossRefGoogle Scholar
  14. Jolivet E, Matsunaga F, Ishino Y, Forterre P, Prieur D, Myllykallio H (2003b) Physiological responses of the hyperthermophilic archaeon “Pyrococcus abyssi” to DNA damage caused by ionizing radiation. J Bacteriol 185:3958–3961PubMedCrossRefGoogle Scholar
  15. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227PubMedCrossRefGoogle Scholar
  16. Keller LC, Maxcy RB (1984) Effect of physiological age on radiation resistance of some bacteria that are highly radiation resistant. Appl Environ Microbiol 47:915–918PubMedGoogle Scholar
  17. Kottemann M, Kish A, Iloanusi C, Bjork S, DiRuggiero J (2005) Physiological responses of the halophilic archaeon Halobacterium sp. strain NRC1 to desiccation and gamma irradiation. Extremophiles 9:219–227PubMedCrossRefGoogle Scholar
  18. Krasin F, Hutchinson F (1977) Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate genome. J Mol Biol 116:81–98PubMedCrossRefGoogle Scholar
  19. Majernik AI, Lundgren M, McDermott P, Bernander R, Chong JP (2005) DNA content and nucleoid distribution in Methanothermobacter thermautotrophicus. J Bacteriol 187:1856–1858PubMedCrossRefGoogle Scholar
  20. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavrommatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ (2007) Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS ONE 2:e955PubMedCrossRefGoogle Scholar
  21. Minsky A (2003) Structural aspects of DNA repair: the role of restricted diffusion. Mol Microbiol 50:367–376PubMedCrossRefGoogle Scholar
  22. Minton KW (1994) DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol 13:9–15PubMedCrossRefGoogle Scholar
  23. Riley PA (1994) Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 65:27–33PubMedCrossRefGoogle Scholar
  24. Sato T, Fukui T, Atomi H, Imanaka T (2003) Targeted gene disruption by homologous recombination in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 185:210–220PubMedCrossRefGoogle Scholar
  25. Shahmohammadi HR, Asgarani E, Terato H, Saito T, Ohyama Y, Gekko K, Yamamoto O, Ide H (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res (Tokyo) 39:251–262CrossRefGoogle Scholar
  26. White O, Eisen JA, Heidelberg JF, Hickey EK, Peterson JD, Dodson RJ, Haft DH, Gwinn ML, Nelson WC, Richardson DL, Moffat KS, Qin H, Jiang L, Pamphile W, Crosby M, Shen M, Vamathevan JJ, Lam P, McDonald L, Utterback T, Zalewski C, Makarova KS, Aravind L, Daly MJ, Minton KW, Fleischmann RD, Ketchum KA, Nelson KE, Salzberg S, Smith HO, Venter JC, Fraser CM (1999) Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286:1571–1577PubMedCrossRefGoogle Scholar
  27. Williams E, Lowe TM, Savas J, DiRuggiero J (2007) Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles 11:19–29PubMedCrossRefGoogle Scholar
  28. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579PubMedCrossRefGoogle Scholar
  29. Zahradka K, Slade D, Bailone A, Sommer S, Averbeck D, Petranovic M, Lindner AB, Radman M (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  30. Zimmerman JM, Battista JR (2005) A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol 5:17PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Angels Tapias
    • 1
    • 2
  • Christophe Leplat
    • 1
  • Fabrice Confalonieri
    • 1
    Email author
  1. 1.Laboratoire de Génomique des ArchaeaUniversité Paris-Sud 11 CNRS UMR 8621, Institut de Génétique et MicrobiologieOrsayFrance
  2. 2.Departamento de Biotecnología MicrobianaCentro Nacional de Biotecnología, CNB, CSICMadridSpain

Personalised recommendations