, 13:179 | Cite as

Biochemical and structural studies of a l-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii

  • Carrie A. Rye
  • Michail N. Isupov
  • Andrey A. Lebedev
  • Jennifer A. LittlechildEmail author
Original Paper


Haloacid dehalogenases have potential applications in the pharmaceutical and fine chemical industry as well as in the remediation of contaminated land. The l-2-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii has been cloned and over-expressed in Escherichia coli and successfully purified to homogeneity. Here we report the structure of the recombinant dehalogenase solved by molecular replacement in two different crystal forms. The enzyme is a homodimer with each monomer being composed of a core-domain of a β-sheet bundle surrounded by α-helices and an α-helical sub-domain. This fold is similar to previously solved mesophilic l-haloacid dehalogenase structures. The monoclinic crystal form contains a putative inhibitor l-lactate in the active site. The enzyme displays haloacid dehalogenase activity towards carboxylic acids with the halide attached at the C2 position with the highest activity towards chloropropionic acid. The enzyme is thermostable with maximum activity at 60°C and a half-life of over 1 h at 70°C. The enzyme is relatively stable to solvents with 25% activity lost when incubated for 1 h in 20% v/v DMSO.


Haloacid dehalogenase Sulfolobus tokodaii X-ray structure 



The Engineering and Physical Sciences Research Council, UK and TMO Renewables are acknowledged for PhD studentship funding to CAR. We thank Prof. T. Oshima for providing the S. tokodaii genomic DNA and we thank Dr. Roger Cripps for useful discussions. AAL was supported by a BBSRC grant. The Synchrotron Radiation Source, Daresbury, UK is acknowledged for provision of Data Collection Facilities on the NWSGC MAD10 beamline funded by BBSRC grants (719/B15474 and 719/REI20571) and an NWDA project award (N0002170).


  1. Allpress JD, Gowland PC (1998) Dehalogenases: environmental defence mechanism and model of enzyme evolution. Biochem Education 26:267–276CrossRefGoogle Scholar
  2. Arai R, Kukimoto-Niino M, Kuroishi C, Bessho Y, Shirouzu M, Yokoyama S (2006) Crystal structure of the probable haloacid dehalogenase PH0459 from Pyrococcus horikoshii OT3. Protein Sci 15:373–377PubMedCrossRefGoogle Scholar
  3. CCP4. Collaborative Computational Project, Number 4 (1994) Acta Cryst D 50:760–763CrossRefGoogle Scholar
  4. Diez A, Prieto MI, Alvarez MJ, Bautista JM, Garrido J, Puyet A (1996) Improved catalytic performance of a 2-haloacid dehalogenase from Azotobacter sp. by ion-exchange immobilisation. Biochem Biophys Res Comm 220:828–833PubMedCrossRefGoogle Scholar
  5. Emsley P, Cowtan K (2004) COOT: model-building tools for molecular graphics. Acta Cryst D 60:2184–2195CrossRefGoogle Scholar
  6. Esnouf RM (1997) An extensively modified version of MOLSCRIPT that includes greatly enhanced colouring capabilities. J Mol Graph Model 15:132–134PubMedCrossRefGoogle Scholar
  7. Hisano T, Hata Y, Fujii T, Liu JQ, Kurihara T, Esaki N, Soda K (1996) Crystal structure of l-2-haloacid dehalogenase from Pseudomonas sp. YL. J Biol Chem 271:20322–20330PubMedCrossRefGoogle Scholar
  8. Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7. DNA Res 8:123–140PubMedCrossRefGoogle Scholar
  9. Kurihara T, Liu JQ, Nardi-Dee V (1995) Comprehensive site directed mutagenesis of l-2-haloacid dehalogenases to probe catalytic amino acid residues. J Biochem 117:1317–1322PubMedGoogle Scholar
  10. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291CrossRefGoogle Scholar
  11. Li YF, Hato Y, Fujii T, Hisano T, Nishihara M, Kurihara T, Esaki N (1998) Crystal structures of reaction intermediates of l-2-haloacid dehalogenase and implications for the reaction mechanism. J Biol Chem 273:15035–15044PubMedCrossRefGoogle Scholar
  12. Liu JQ, Kurihara T, Hasan KMQ, Nardi-dee V, Koshikawa N, Esaki N, Soda K (1995) Purification of thermostable and nonthermostable 2-haloacid dehalogenases with different stereospecificities from Pseudomonas sp. strain YL. J Biol Chem 270:18309–18312PubMedCrossRefGoogle Scholar
  13. Mallick P, Boutz DR, Eisenberg D, Yeates TO (2002) Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proc Natl Acad Sci USA 99:9679–9684PubMedCrossRefGoogle Scholar
  14. Motosugi K, Esaki N, Soda K (1982) Purification and properties of a new enzyme, dl-2-haloacid dehalogenase from Pseudomonas sp. J Bacteriol 150:522–527PubMedGoogle Scholar
  15. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst D 53:240–255CrossRefGoogle Scholar
  16. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscullation mode. Methods Enzymol 276:307–326CrossRefGoogle Scholar
  17. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427PubMedCrossRefGoogle Scholar
  18. Potterton P, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M (2004) Developments in the CCP4 molecular-graphics project. Acta Cryst D 60:2288–2294CrossRefGoogle Scholar
  19. Ridder IS, Rozeboom HJ, Kalk KH, Dijkstra BW (1997) Three-dimensional structure of l-2-haloacid dehalogenases from Xanthobacter autotrophicus GJ10 complexed with the substrate analogue formate. J Biol Chem 272:33015–33022PubMedCrossRefGoogle Scholar
  20. Ridder IS, Rozeboom HJ, Kalk KH, Dijkstra BW (1999) Crystal structures of intermediates in the dehalogenation of haloalkanoates by l-2-haloacid dehalogenase. J Biol Chem 274:30672–30678PubMedCrossRefGoogle Scholar
  21. Rye CA, Isupov MN, Lebedev AA, Littlechild JA (2007) An order-disorder twin crystal of l-2-haloacid dehalogenase from Sulfolobus tokodaii. Acta Cryst D 63:926–930CrossRefGoogle Scholar
  22. Slater JH (1982) New microbes to tackle toxic compounds. South Af J Sci 78:101–104Google Scholar
  23. Slater JH, Bull AT, Hardman DJ (1997) Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanes. Adv Microbiol Physiol 38:133–176CrossRefGoogle Scholar
  24. Tsang JSH, Sam L (1999) Cloning and characterisation of a cryptic haloacid dehalogenases from Burkholderia cepacia MBA4. J Bacteriol 181:6003–6009PubMedGoogle Scholar
  25. Vagin AA, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025CrossRefGoogle Scholar
  26. van der Ploeg J, van Hall G, Janssen DB (1991) Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the DhlB gene. J Bacteriol 173:7925–7933PubMedGoogle Scholar
  27. Vriend G (1990) WHAT IF: a molecular modeling and drug design program. J Mol Graph 8:52–56PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Carrie A. Rye
    • 2
  • Michail N. Isupov
    • 2
  • Andrey A. Lebedev
    • 1
    • 2
  • Jennifer A. Littlechild
    • 2
    Email author
  1. 1.Structural Biology Laboratory, Department of ChemistryUniversity of YorkYorkUK
  2. 2.Henry Wellcome Building for Biocatalysis, School of BiosciencesUniversity of ExeterExeterUK

Personalised recommendations