Advertisement

Extremophiles

, Volume 13, Issue 1, pp 169–178 | Cite as

Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico)

  • Rocio J. Alcántara-Hernández
  • César Valenzuela-Encinas
  • Rodolfo Marsch
  • Luc Dendooven
Original Paper

Abstract

The diversity of the dissimilatory and respiratory nitrate-reducing communities was studied in two soils of the former lake Texcoco (Mexico). Genes encoding the membrane-bound nitrate reductase (narG) and the periplasmic nitrate reductase (napA) were used as functional markers. To investigate bacterial communities containing napA and narG in saline alkaline soils of the former lake Texcoco, libraries of the two sites were constructed (soil T3 with pH 11 and electrolytic conductivity in saturated extract (ECSE) 160 dS m−1 and soil T1 with pH 8.5 and ECSE 0.8 dS m−1). Phylogenetic analysis of napA sequences separated the clone families into two main groups: dependent or independent of NapB. Most of napA sequences from site T1 were grouped in the NapB-dependent clade, meanwhile most of the napA sequences from the extreme soil T3 were affiliated to the NapB-independent group. For both sites, partial narG sequences were associated with representatives of the Proteobacteria, Firmicutes and Actinobacteria phyla, but the proportions of the clones were different. Our results support the concept of a specific and complex nitrate-reducing community for each soil of the former lake Texcoco.

Keywords

Dissimilatory nitrate reduction Saline alkaline soil napA gene narG gene 

Notes

Acknowledgments

The research was funded by “Secretaria de Medio Ambiente y Recursos Naturales” (SEMARNAT) project SEMARNAT-2004-C01-257 and “Consejo Nacional de Ciencia y Tecnología” (CONACYT) project SEP-1004-C01-479991.I·N. We thank Soledad Vásquez-Murrieta and Erick Ruiz-Romero for providing soil samples from Xochimilco and Texcoco and Francisco Javier Zavala de la Serna for revising the manuscript. R.A.-H. and C.V.-E. received grant-aided support from CONACYT.

References

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  2. Bedzyk L, Wang T, Ye RW (1999) The periplasmic nitrate reductase in Pseudomonas sp. strain G-179 catalyzes the first step of denitrification. J Bacteriol 181:2802–2806PubMedGoogle Scholar
  3. Berks BC, Ferguson SJ, Moir JWB, Richardson DJ (1995a) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochem Biophys Acta 1232:97–173PubMedCrossRefGoogle Scholar
  4. Berks BC, Richardson DJ, Reilly A, Willis AC, Ferguson SJ (1995b) The napEDABC gene cluster enconding the periplasmic nitrate reductase system of Thiosphaera pantotropa. Biochem J 309:983–992PubMedGoogle Scholar
  5. Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA (2001) The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell Mol Life Sci 58:179–193PubMedCrossRefGoogle Scholar
  6. Bru D, Sarr A, Philippot L (2007) Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments. Appl Environ Microbiol 73:5971–5974PubMedCrossRefGoogle Scholar
  7. Bursakov SA, Carneiro C, Almendra MJ, Duarte RO, Caldeira J, Moura I, Moura JJG (1997) Enzymatic properties and effect of ionic strength on periplasmic nitrate reductase (NAP) from Desulfovibrio desulfuricans ATCC 27774. Biochem Biophys Res Commun 239:816–822PubMedCrossRefGoogle Scholar
  8. Carter JP, Hsaio YH, Spiro S, Richardson DJ (1995) Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol 61:2852–2858PubMedGoogle Scholar
  9. Castillo F, Dobao MM, Reyes F, Blasco R, Roldán MD, Gavira M, Caballero FJ, Martínez-Luque M (1996) Molecular and regulatory properties of the nitrate-reducing systems of Rhodobacter. Curr Microbiol 33:341–346PubMedCrossRefGoogle Scholar
  10. Castro-Silva C, Luna-Guido ML, Ceballos JM, Marsch R, Dendooven L (2008) Production of carbon dioxide and nitrous oxide in alkaline saline soil of texcoco at different water contents amended with urea: a laboratory study. Soil Biol Biochem 40:1813–1822CrossRefGoogle Scholar
  11. Chèneby D, Hallet S, Mondon M, Martin-Laurent F, Germon JC, Philippot L (2003) Genetic characterization of the nitrate-reducing community based on narG nucleotide sequence analysis. Microb Ecol 46:113–121PubMedCrossRefGoogle Scholar
  12. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the clustal series of programs. Nucl Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
  13. Christensen S, Simkins S, Tiedje JM (1990) Temporal patterns of soil denitrification: their stability and causes. Soil Sci Soc Am J 54:1614–1618CrossRefGoogle Scholar
  14. Conde E, Cardenas M, Ponce-Mendoza A, Luna-Guido ML, Cruz-Mondragon C, Dendooven L (2005) The impacts of inorganic nitrogen application on mineralization of 14C-labelled maize and glucose, and on priming effect in saline alkaline soil. Soil Biol Biochem 37:681–691CrossRefGoogle Scholar
  15. D’Haene K, Moreels E, Neve S, Chaves Daguilar B, Boeckx P, Hofman G, Cleemput O (2003) Soil properties influencing the denitrification potential of flemish agricultural soils. Biol Fert Soils 38:358–366CrossRefGoogle Scholar
  16. Dias JM, Than ME, Humm A, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvate J, Caldeira J, Carneiro C, Moura JJG, Moura I, Romao MJ (1999) Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7:65–79PubMedCrossRefGoogle Scholar
  17. Eisle O, Kroneck PMH (2004) Structural basis of denitrification. Biol Chem 385:875–883CrossRefGoogle Scholar
  18. Flanagan DA, Gregory LG, Carter JP, Karakas-Sen A, Richardson DJ, Spiro S (1999) Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol Lett 177:263–270PubMedCrossRefGoogle Scholar
  19. Ghiglione J-F, Gourbiere F, Potier P, Philippot L, Lensi R (2000) Role of respiratory nitrate reductase in ability of Pseudomonas fluorescens YT101 to colonize the rhizosphere of maize. Appl Environ Microbiol 66:4012–4016PubMedCrossRefGoogle Scholar
  20. Giovannoni S, Rappé M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, New Jersey, pp 47–84Google Scholar
  21. Gregory LG, Karakas-Sen A, Richardson DJ, Spiro S (2000) Detection of genes for membrane-bound nitrate reductase in nitrate-respiring bacteria and in community DNA. FEMS Microbiol Lett 183:275–279PubMedCrossRefGoogle Scholar
  22. Gregory LG, Bond PL, Richardson DJ, Spiro S (2003) Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiology 149:229–237PubMedCrossRefGoogle Scholar
  23. Jepson BJN, Marietou A, Mohan S, Cole JA, Butler CS, Richardson DJ (2006) Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem Soc Trans 34:122–126PubMedCrossRefGoogle Scholar
  24. Kisand V, Wikner J (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Methods 54:183–191PubMedCrossRefGoogle Scholar
  25. Luna-Guido ML, Beltrán-Hernández RI, Solís-Ceballos NA, Hernández-Chávez N, Mercado-García F, Catt JA, Olalde-Portugal V, Dendooven L (2000) Chemical and biological characteristics of alkaline saline soils from the former lake texcoco as affected by artificial drainage. Biol Fertil Soils 32:102–108CrossRefGoogle Scholar
  26. Luna-Guido ML, Beltrán-Hernández RI, Dendooven L (2001) Dynamics of 14C-labelled glucose in alkaline saline soil. Soil Biol Biochem 33:707–719CrossRefGoogle Scholar
  27. Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584PubMedGoogle Scholar
  28. Mounier E, Hallet S, Cheneby D, Benizri E, Gruet Y, Nguyen C, Piutti S, Robin C, Slezack-Deschaumes S, Martin-Laurent F, Germon JC, Philippot L (2004) Influence of maize mucilage on the diversity and activity of the denitrifying community. Environ Microbiol 6:301–312PubMedCrossRefGoogle Scholar
  29. Nijburg JW, Laanbroek HJ (1997) The influence of Glyceria maxima and nitrate input on the composition and nitrate metabolism of the dissimilatory nitrate-reducing bacterial community. FEMS Microbiol Ecol 22:57–63CrossRefGoogle Scholar
  30. Nijburg JW, Coolen MJL, Gerards S, Gunnewiek P, Laanbroek HJ (1997) Effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community. Appl Environ Microbiol 63:931–937PubMedGoogle Scholar
  31. Nonaka H, Keresztes G, Shinoda Y, Ikenaga Y, Abe M, Naito K, Inatomi K, Furukawa K, Inui M, Yukawa H (2006) Complete genome sequence of the dehalorespiring bacterium Desulfitobacterium hafniense Y51 and comparison with Dehalococcoides ethenogenes 195. J Bacteriol 188:2262–2274PubMedCrossRefGoogle Scholar
  32. Page RDM (1996) Tree View: An application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  33. Philippot L (2002) Denitrifying genes in bacterial and archaeal genomes. BBA-Gene Struct Expr 1577:355–376Google Scholar
  34. Philippot L, Clays-Josserand A, Lensi R (1995) Use of Tn5 mutants to assess the role of the dissimilatory nitrite reductase in the competitive abilities of two Pseudomonas strains in soil. Appl Environ Microbiol 61:1426–1430PubMedGoogle Scholar
  35. Philippot L, Piutti S, Martin-Laurent F, Hallet S, Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol 68:6121–6128PubMedCrossRefGoogle Scholar
  36. Philippot L, Kuffner M, Chèneby D, Depret G, Laguerre G, Martin-Laurent F (2006) Genetic structure and activity of the nitrate-reducers community in the rhizosphere of different cultivars of maize. Plant Soil 287:177–186CrossRefGoogle Scholar
  37. Potter LC, Millington P, Griffiths LH, Thomas GA, Cole J (1999) Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem J 344:77–84PubMedCrossRefGoogle Scholar
  38. Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178PubMedCrossRefGoogle Scholar
  39. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  40. Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 73:3612–3622PubMedCrossRefGoogle Scholar
  41. Sorokin D, Zhilina T, Lysenko A, Tourova T, Spiridonova E (2006) Metabolic versatility of haloalkaliphilic bacteria from soda lakes belonging to the Alkalispirillum–Alkalilimnicola group. Extremophiles 10:213–220PubMedCrossRefGoogle Scholar
  42. Stolz JF, Basu P (2002) Evolution of nitrate reductase: molecular and structural variations on a common function. ChemBioChem 3:198–206PubMedCrossRefGoogle Scholar
  43. Ueda K, Yamashita A, Ishikawa J, Shimada M, T-o Watsuji, Morimura K, Ikeda H, Hattori M, Beppu T (2004) Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism. Nucleic Acids Res 32:4937–4944PubMedCrossRefGoogle Scholar
  44. Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández R, Enríquez-Aragón J, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake texcoco (Mexico). Extremophiles 12:247–254PubMedCrossRefGoogle Scholar
  45. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y-H, Smith HO (2004) Environmental genome shotgun sequencing of the sargasso sea. Science 304:66–74PubMedCrossRefGoogle Scholar
  46. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699PubMedGoogle Scholar
  47. Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Rocio J. Alcántara-Hernández
    • 1
  • César Valenzuela-Encinas
    • 1
  • Rodolfo Marsch
    • 1
  • Luc Dendooven
    • 1
  1. 1.Departamento de Biotecnología y BioingenieríaCinvestavMexicoMexico

Personalised recommendations