Advertisement

Extremophiles

, Volume 13, Issue 1, pp 101–109 | Cite as

Fatty acids, unusual glycophospholipids and DNA analyses of thermophilic bacteria isolated from hot springs

  • Lucie Siristova
  • Karel Melzoch
  • Tomas Rezanka
Original Paper

Abstract

The composition of fatty acids in 12 strains of the genera Thermus, Meiothermus, Geobacillus and Alicyclobacillus was analyzed by gas chromatography–mass spectrometry. Major FAs found in the profiles included i-15:0, i-17:0, ai-15:0, i-16:0, 16:0, ai-17:0, together with some minor components. Branched FAs were predominant, forming more than 80% of all FAs measured. Fast atom bombardment-mass spectrometry was used for analysis of unusual glycophospholipids, i.e., acylglycosylcardiolipins from genera Geobacillus and Alicyclobacillus and 1-(hydroxy(2-(O-acylglycosyl-oxy)hexadecyloxy)phosphoryloxy) hexadecan-2-yl esters of C15–C17 acids from genera Thermus and Meiothermus. Cloning and preliminary sequence analysis of 16S rDNA showed that these isolates belong to the genera Thermus, Meiothermus, Geobacillus and Alicyclobacillus.

Keywords

Thermus Meiothermus Geobacillus Alicyclobacillus Fatty acids Glycophospholipids FAB-MS 16S rDNA analysis Phylogenetic tree Hot springs 

Notes

Acknowledgments

The research was supported by Institutional Research Concept AV 0Z 502 0910 and by the project No. MSM6046137305 of the Ministry of Education, Youth and Sport of the Czech Republic.

References

  1. Albers SV, Driessen AJM (2008) Membranes and transport proteins of thermophilic bacteria. Thermophiles 39–54Google Scholar
  2. Bligh ED, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Biophysiol 37:911–917CrossRefGoogle Scholar
  3. Charlier D, Droogmans L (2005) Microbial life at high temperature, the challenges, the strategies. Cell Mol Life Sci 62:2974–2984PubMedCrossRefGoogle Scholar
  4. da Costa MS, Nobre MF, Wait R (2006) Analysis of lipids from extremophilic bacteria. Methods Microbiol 35:27–159Google Scholar
  5. Dembitsky VM (2004) Chemistry and biodiversity of the biologically active natural glycosides. Chem Biodivers 1:673–781PubMedCrossRefGoogle Scholar
  6. Driessen AJM, Albers SV (2007) Membrane adaptations of (hyper)thermophiles to high temperature. Physiol Biochem Extremophiles 104–116Google Scholar
  7. Goto K, Mochida K, Asahara M, Suzuki M, Kasai H, Yokota A (2003) Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Micr 53:1537–1544CrossRefGoogle Scholar
  8. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–232Google Scholar
  9. Kates M (1986) Techniques of lipidology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  10. Kristjansson JK (1992) Thermophilic bacteria. CRC Press LLC, New YorkGoogle Scholar
  11. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  12. Luzzati V, Gambacorta A, DeRosa M, Gulik A (1987) Polar lipids of thermophilic prokaryotic organisms: chemical and physical structure. Ann Rev Biophys Biophys Chem 16:25–47CrossRefGoogle Scholar
  13. Matsubara H, Goto K, Matsumura T, Mochida K, Iwaki M, Niwa M, Yamasato K (2002) Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω-alicyclic fatty acid containing bacterium isolated from acidic beverages. Int J Syst Evol Micr 52:1681–1685CrossRefGoogle Scholar
  14. Murray V (1989) Improved double-stranded DNA sequencing using linear polymerase chain reaction. Nucleic Acids Res 17:8889PubMedCrossRefGoogle Scholar
  15. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: description of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Micr 51:433–446Google Scholar
  16. Nicolaus B, Manca MC, Lama L, Esposito E, Gambacorta A (2001) Lipid modulation by environmental stresses in two models of extremophiles isolated from Antarctica. Polar Biol 24:1–8CrossRefGoogle Scholar
  17. Nordstrom KM, Laakso SV (1992) Effect of growth temperature on fatty acid composition of ten Thermus strains. Appl Environ Microb 58:1656–1660Google Scholar
  18. Peter-Katalinic J, Fischer W (1998) Alpha-d-glucopyranosyl-, d-alanyl- and l-lysylcardiolipin from gram-positive bacteria: analysis by fast atom bombardment mass spectrometry. J Lipid Res 39:2286–2292PubMedGoogle Scholar
  19. Ray PH, White DC, Brock TD (1971) Effect of temperature on the fatty acid composition of Thermus aquaticus. J Bacteriol 106:25–30PubMedGoogle Scholar
  20. Rezanka T (1993) Polyunsaturated and unusual fatty-acids from slime-molds. Phytochemistry 33:1441–1444CrossRefGoogle Scholar
  21. Rezanka T, Zlatkin IV, Viden I, Slabova OI, Nikitin DI (1991) Capillary gas chromatography–mass spectrometry of unusual and very long-chain fatty acids from soil oligotrophic bacteria. J Chromatogr 558:215–221CrossRefGoogle Scholar
  22. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  23. Sanger F, Nickeln S, Coulson AR (1977) DNA sequencing with chain-terminator inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  24. Schaffer C, Beckedorf AI, Scheberl A, Zayni S, Peter-Katalinic J, Messner P (2002) Isolation of glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 184:6709–6713PubMedCrossRefGoogle Scholar
  25. Sharp R, Williams RAD (1995) Thermus species. Plenum Press, New YorkGoogle Scholar
  26. Varki A, Freeze HH, Manzi AE (2001) Overview of glycoconjugate analysis. Curr Protoc Protein Sci Chap. 12, Unit 12.1Google Scholar
  27. Wiegel GJ, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108CrossRefGoogle Scholar
  28. Yang YL, Yang FL, SCh Jao, Chen MY, Tsay SS, Zou W, Wul SH (2006) Structural elucidation of phosphoglycolipids from strains. J Lipid Res 47:1823–1832PubMedCrossRefGoogle Scholar
  29. Zeigler DZ (2001) Catalog of strains, 7th edition, Vol. 3: the genus Geobacillus. The Ohio State University, OhioGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Fermentation Chemistry and BioengineeringInstitute of Chemical Technology PraguePragueCzech Republic
  2. 2.Institute of MicrobiologyPragueCzech Republic

Personalised recommendations