Extremophiles

, Volume 12, Issue 5, pp 713–717 | Cite as

A bacterial ice-binding protein from the Vostok ice core

  • James A. Raymond
  • Brent C. Christner
  • Stephan C. Schuster
Original Paper

Abstract

Bacterial and yeast isolates recovered from a deep Antarctic ice core were screened for proteins with ice-binding activity, an indicator of adaptation to icy environments. A bacterial strain recovered from glacial ice at a depth of 3,519 m, just above the accreted ice from Subglacial Lake Vostok, was found to produce a 54 kDa ice-binding protein (GenBank EU694412) that is similar to ice-binding proteins previously found in sea ice diatoms, a snow mold, and a sea ice bacterium. The protein has the ability to inhibit the recrystallization of ice, a phenotype that has clear advantages for survival in ice.

Keywords

Subglacial Lake Vostok Flavobacteriaceae Ice-binding protein Recrystallization inhibition Ice grain boundaries 

Notes

Acknowledgments

We thank A. Chien, K. Schegg, B. Arnold for valuable assistance, S. Doyle for microscopic imaging, and J. Priscu for discussion. This work was partially supported by an NIH IMBRE grant. B. C. is supported by NSF grants EAR-0525567 and OPP-0636828.

References

  1. Bidle KD, Lee S, Marchant DR, Falkowski PG (2007) Fossil genes and microbes in the oldest ice on Earth. Proc Natl Acad Sci USA 104:13455–13460PubMedCrossRefGoogle Scholar
  2. Bowman JP et al (1998) Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609PubMedCrossRefGoogle Scholar
  3. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577PubMedCrossRefGoogle Scholar
  4. Christner BC, Mikucki JA, Foreman CM, Denson J, Priscu JC (2005) Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus 174:572–584CrossRefGoogle Scholar
  5. Christner BC et al (2006) Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501Google Scholar
  6. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309PubMedCrossRefGoogle Scholar
  7. Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold. Biochem J 411:171–180PubMedCrossRefGoogle Scholar
  8. Gosink JJ, Woese CR, Staley JT (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235PubMedCrossRefGoogle Scholar
  9. Hoshino T et al (2003) Antifreeze proteins from snow mold fungi. Can J Bot 81:1175–1181CrossRefGoogle Scholar
  10. Inman M (2007) Microbial ecology—the dark and mushy side of a frozen continent. Science 317:35–36PubMedCrossRefGoogle Scholar
  11. Janech MG, Krell A, Mock T, Kang JS, Raymond JA (2006) Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J Phycol 42:410–416CrossRefGoogle Scholar
  12. Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ (2006) Subsurface ice as a microbial habitat. Geology 34:169–172CrossRefGoogle Scholar
  13. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  14. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213PubMedCrossRefGoogle Scholar
  15. Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCrossRefGoogle Scholar
  16. Paterson WSB (1994) The physics of glaciers, 3rd edn. Pergamon, OxfordGoogle Scholar
  17. Petit JR et al (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  18. Price PB (2000) A habitat for psychrophiles in deep Antarctic ice. Proc Natl Acad Sci USA 97:1247–1251PubMedCrossRefGoogle Scholar
  19. Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221PubMedCrossRefGoogle Scholar
  20. Raymond JA, Fritsen CH (2000) Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organisms. Antarctic Sci 12:418–424CrossRefGoogle Scholar
  21. Raymond JA, Fritsen CH (2001) Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43:63–70PubMedCrossRefGoogle Scholar
  22. Salamatin AN, Tsyganova EA, Lipenkov VY, Petit JR (2004) Vostok (Antarctica) ice-core time-scale from datings of different origins. Ann Glaciol 39:283–292CrossRefGoogle Scholar
  23. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  24. Urrutia ME, Duman JG, Knight CA (1992) Plant thermal hysteresis proteins. Biochim Biophys Acta 1121:199–206PubMedGoogle Scholar
  25. Walker VK, Palmer GR, Voordouw G (2006) Freeze-thaw tolerance and clues to the winter survival of a soil community. Appl Environ Microbiol 72:1784–1792PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • James A. Raymond
    • 1
  • Brent C. Christner
    • 2
  • Stephan C. Schuster
    • 3
  1. 1.School of Life SciencesUniversity of NevadaLas VegasUSA
  2. 2.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  3. 3.Center for Comparative Genomics and BioinformaticsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations