, Volume 12, Issue 5, pp 701–711 | Cite as

Identity and physiology of a new psychrophilic eukaryotic green alga, Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica

  • Rachael M. Morgan-Kiss
  • Alexander G. Ivanov
  • Shannon Modla
  • Kirk Czymmek
  • Norman P. A. Hüner
  • John C. Priscu
  • John T. Lisle
  • Thomas E. Hanson
Original Paper


Permanently low temperature environments are one of the most abundant microbial habitats on earth. As in most ecosystems, photosynthetic organisms drive primary production in low temperature food webs. Many of these phototrophic microorganisms are psychrophilic; however, functioning of the photosynthetic processes of these enigmatic psychrophiles (the “photopsychrophiles”) in cold environments is not well understood. Here we describe a new chlorophyte isolated from a low temperature pond, on the Ross Ice Shelf near Bratina Island, Antarctica. Phylogenetic and morphological analyses place this strain in the Chlorella clade, and we have named this new chlorophyte Chlorella BI. Chlorella BI is a psychrophilic species, exhibiting optimum temperature for growth at around 10°C. However, psychrophily in the Antarctic Chlorella was not linked to high levels of membrane-associated poly-unsaturated fatty acids. Unlike the model Antarctic lake alga, Chlamydomonas raudensis UWO241, Chlorella BI has retained the ability for dynamic short term adjustment of light energy distribution between photosystem II (PS II) and photosystem I (PS I). In addition, Chlorella BI can grow under a variety of trophic modes, including heterotrophic growth in the dark. Thus, this newly isolated photopsychrophile has retained a higher versatility in response to environmental change than other well studied cold-adapted chlorophytes.


Antarctica Chlorella Green alga Photophysiology Photopsychrophile 





Chlorophyll a


Chlorophyll b


Epoxidation state of the xanthophyll cycle


77 K Fluorescence emission maxima at 685, 695, 715 nm


Fatty acid methyl esters


Light harvesting II


Photosynthetically active radiation


Photosystem I


Photosystem II


Polyunsaturated fatty acids


Optimal growth temperature


Maximum growth temperature





Supplementary material

792_2008_176_MOESM1_ESM.jpg (414 kb)
False coloured SEM of Chlorella BI grown under mixotrophic conditions 236x211mm (72 x 72 DPI) (JPG 414 kb).
792_2008_176_MOESM2_ESM.jpg (328 kb)
SEM of Chlorella BI grown under mixotrophic conditions 236x211mm (72 x 72 DPI) (JPG 327 kb).
792_2008_176_MOESM3_ESM.tif (3.6 mb)
(JPG 3.62 mb)


  1. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  2. Bouarb L, Dauta A, Loudiki M (2004) Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose: effect of light and acetate gradient concentration. Wat Res 38:2706–2712CrossRefGoogle Scholar
  3. Chen F, Johns MR (1991) Effect of C/N ratios and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209CrossRefGoogle Scholar
  4. Christie WW (2003) Lipid analysis: isolation, separation, identification and structural analysis of lipids, 3rd edn, vol 15. The Oily Press, BridgewaterGoogle Scholar
  5. Cota GF (1985) Photoadaptation of high arctic ice algae. Nature 315:219–222CrossRefGoogle Scholar
  6. D’amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  7. Demmig-Adams B, Adams WWIII (1992) Photoprotection and other responses of plants to high light stress. Ann Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  8. Devos N, Ingouff M, Loppes R, Matagne R (1998) RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae. J Phycol 34:665–660CrossRefGoogle Scholar
  9. Erokhina LG, Shatilovich AV, Kaminskaya OP, Gilichinskii DA (2004) Spectral properties of ancient green algae from Antarctic Dry Valley permafrost. Microbiology 73:485–487CrossRefGoogle Scholar
  10. Fiala M, Oriol L (1990) Light-temperature interactions on the growth of Antarctic diatoms. Mar Chem 35:169–177Google Scholar
  11. Fritsen CH, Priscu JC (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and dynamics. Limnol Oceanogr 44:447–454Google Scholar
  12. Gushina IA, Harwood JL (2006) Mechanisms of temperature adaptation in poikilotherms. FEBS Lett 580:5477–5483CrossRefGoogle Scholar
  13. Hawes I, Howard-Williams C (2003) Pond life on the McMurdo Ice Shelf, one of the world’s strangest ecosystems. NIWA 11:21–22Google Scholar
  14. Hawes I, Smith REH, Howard-Williams C, Schwarz A-M (1999) Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica. Antarc Sci 11:198–208Google Scholar
  15. Howard-Williams C, Pridmore R, Downes MT, Vincent WF (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice shelf, Antarctica. Antarc Sci 1:125–131Google Scholar
  16. Hüner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230CrossRefGoogle Scholar
  17. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophyll a, b, c1, c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Molec Evol 16:111–120PubMedCrossRefGoogle Scholar
  19. Kovacs L, Wiessner W, Kis M, Nagy F, Mende D, Demeter S (2000) Short- and long-term redox regulation of photosynthetic light energy distribution and photosystem stoichiometry by acetate metabolism in the green alga, Chlamydobytrys stellata. Photosyn Res 65:231–247PubMedCrossRefGoogle Scholar
  20. Krause GH, Weis E (1984) Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosyn Res 5:139–157CrossRefGoogle Scholar
  21. Krienitz L, Hegewald E, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycolog 43:529–542CrossRefGoogle Scholar
  22. Laybourn-Parry J, Pearce DA (2007) The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc Lond B Biol Sci 362:2273–2289PubMedCrossRefGoogle Scholar
  23. Lizotte MP, Priscu JC (1992) Photosynthesis-irradiance relationships in phytoplankton from the physically stable water column of a perennially ice-covered lake (Lake Bonney, Antarctica). J Phycol 28:179–185CrossRefGoogle Scholar
  24. Luo W, Pflugmacher S, Proschold T, Walz N, Krienitz L (2006) Genotype versus phenotype variability in Chlorella and Micractinium (Chlorophyta, Trebouxiophyceae). Protist 157:315–333PubMedCrossRefGoogle Scholar
  25. McLachlan JL, Curtis JM, Keusgen M, Boutilier K, Keusgen M, Seguel MR (1999) Tetreutreptia pomquetensis (Euglenophyta), a psychrophilic species: growth and fatty acid composition. J Phycol 35:280–286CrossRefGoogle Scholar
  26. Mock T, Hock H (2005) Long-term temperature acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosyn Res 85:307–317PubMedCrossRefGoogle Scholar
  27. Morgan RM, Ivanov AG, Priscu JC, Maxwell DP, Hüner NPA (1998) Structure and composition of the photochemical apparatus of the Antarctic green alga, Chlamydomonas subcaudata. Photosyn Res 56:303–314CrossRefGoogle Scholar
  28. Morgan-Kiss R, Ivanov AG, Williams J, Mobashsher K, Hüner NP (2002a) Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. Biochim Biophys Acta 1561:251–265PubMedCrossRefGoogle Scholar
  29. Morgan-Kiss RM, Ivanov AG, Hüner NPA (2002b) The Antarctic psychrophile, Chlamydomonas subcaudata, is deficient in state I–state II transitions. Planta 214:435–445PubMedCrossRefGoogle Scholar
  30. Morgan-Kiss RM, Ivanov AG, Pocock T, Król M, Gudynaite-Savitch L, Hüner NPA (2005) The Antarctic psychrophile, Chlamydomonas raudensis Ettl (UWO241) (CHLOROPHYCEAE, CHLOROPHYTA) exhibits a limited capacity to photoacclimate to red light. J Phycol 41:791–800CrossRefGoogle Scholar
  31. Morgan-Kiss RM, Priscu JP, Pocock T, Gudynaite-Savitch L, Hüner NPA (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Molec Biol Rev 70:222–252CrossRefGoogle Scholar
  32. Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167PubMedGoogle Scholar
  33. Neale PJ, Priscu JC (1995) The photosynthetic apparatus of phytoplankton from a perennially ice-covered Antarctic lake: acclimation to an extreme shade environment. Plant Cell Physiol 36:253–263Google Scholar
  34. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Ann Rev Plant Physiol Plant Mol Biol 47:541–568CrossRefGoogle Scholar
  35. Pocock T, Lachance M-A, Proschold T, Priscu JC, Kim S, Huner NPA (2004) Identification of a psychrophilic green alga from Lake Bonney Antarctica: Chlamydomonas raudensis ETTL. (UWO 241) (Chlorophyceae). J Phycol 40:1138–1148CrossRefGoogle Scholar
  36. Priscu JC, Christner BC (2004) Earth’s Icy Biosphere. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM Press, Washington, D.C., pp 130–145Google Scholar
  37. Pulich WM, Ward CH (1973) Physiology and ultrastructure of an oxygen-resistant Chlorella mutant under heterotrophic conditions. Plant Physiol 51:337–334PubMedCrossRefGoogle Scholar
  38. Ralph PJ, McMin A, Ryan KG, Ashworth C (2005) Short-term effect of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J Phycol 41:763–769CrossRefGoogle Scholar
  39. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7PubMedGoogle Scholar
  40. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedCrossRefGoogle Scholar
  41. Sato A, Kurano N, Senger H, Miyachi S (2002) Regulation of energy balance in Photosystems in response to changes in CO2 concentrations in light intensities during growth in extremely-high-CO2-tolerant green microalgae. Plant Cell Physiol 43:440–451CrossRefGoogle Scholar
  42. Silverberg BA (1975) An ultrastructural and cytochemical characterization of microbodies in the green algae. Protoplasma 83:269–295PubMedCrossRefGoogle Scholar
  43. Spigel RH, Priscu JC (1998) Physical limnology of the McMurdo Dry Valley lakes. In: Priscu JC (ed) Ecosystem dynamics in a Polar Desert: the McMurdo Dry valleys, Antarctica Antarctic Research Series, vol 72. American Geophysical UnionGoogle Scholar
  44. Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32CrossRefGoogle Scholar
  45. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae. Bacteriol Rev 35:171–205PubMedGoogle Scholar
  46. Ston J, Kosakowska A (2002) Phytoplankton pigments designation-an application of RP-HPLC in qualitative and quantitative analysis. J Appl Phycol 14:205–210CrossRefGoogle Scholar
  47. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630PubMedGoogle Scholar
  48. Sweetman G, Trinei M, Modha J, Kusel J, Freestone P, Fishov I, Joseleau-Petit D, Redman C, Farmer P, Norris V (1996) Electrospray ionization mass spectrometric analysis of phospholipids of Escherichia coli. Molec Microbiol 20:233–238CrossRefGoogle Scholar
  49. Szyszka B, Ivanov AG, Huner NPA (2007) Psychrophily induces differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. Biochim Biophys Acta 1767:789–800PubMedCrossRefGoogle Scholar
  50. Van Heukelem L, Thomas C (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatog A 910:31–49CrossRefGoogle Scholar
  51. Vincent WF, Downes MT, Castenholz R, Howard-Williams C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221CrossRefGoogle Scholar
  52. Vincent WF, Howard-Williams C (2001) Life on snowball Earth. Science 287:2421CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Rachael M. Morgan-Kiss
    • 1
  • Alexander G. Ivanov
    • 2
  • Shannon Modla
    • 3
  • Kirk Czymmek
    • 3
  • Norman P. A. Hüner
    • 2
  • John C. Priscu
    • 4
  • John T. Lisle
    • 5
  • Thomas E. Hanson
    • 3
    • 6
  1. 1.Department of MicrobiologyMiami UniversityOxfordUSA
  2. 2.Department of Biology and The BiotronUniversity of Western OntarioLondonCanada
  3. 3.Delaware Biotechnology InstituteUniversity of DelawareNewarkUSA
  4. 4.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA
  5. 5.USGS Centre for Coastal and Watershed ResearchSt PetersburgFLUSA
  6. 6.College of Marine and Earth StudiesUniversity of DelawareNewarkUSA

Personalised recommendations