, Volume 12, Issue 5, pp 627–640 | Cite as

Culture dependent and independent analyses of 16S rRNA and ATP citrate lyase genes: a comparison of microbial communities from different black smoker chimneys on the Mid-Atlantic Ridge

  • James W. Voordeckers
  • My H. Do
  • Michael Hügler
  • Vivian Ko
  • Stefan M. Sievert
  • Costantino Vetriani
Original Paper


The bacterial and archaeal communities of three deep-sea hydrothermal vent systems located on the Mid-Atlantic Ridge (MAR; Rainbow, Logatchev and Broken Spur) were investigated using an integrated culture-dependent and independent approach. Comparative molecular phylogenetic analyses, using the 16S rRNA gene and the deduced amino acid sequences of the alpha and beta subunits of the ATP citrate lyase encoding genes were carried out on natural microbial communities, on an enrichment culture obtained from the Broken Spur chimney, and on novel chemolithoautotrophic bacteria and reference strains originally isolated from several different deep-sea vents. Our data showed that the three MAR hydrothermal vent chimneys investigated in this study host very different microbial assemblages. The microbial community of the Rainbow chimney was dominated by thermophilic, autotrophic, hydrogen-oxidizing, sulfur- and nitrate-reducing Epsilonproteobacteria related to the genus Caminibacter. The detection of sequences related to sulfur-reducing bacteria and archaea (Archaeoglobus) indicated that thermophilic sulfate reduction might also be occurring at this site. The Logatchev bacterial community included several sequences related to mesophilic sulfur-oxidizing bacteria, while the archaeal component of this chimney was dominated by sequences related to the ANME-2 lineage, suggesting that anaerobic oxidation of methane may be occurring at this site. Comparative analyses of the ATP citrate lyase encoding genes from natural microbial communities suggested that Epsilonproteobacteria were the dominant primary producers using the reverse TCA cycle (rTCA) at Rainbow, while Aquificales of the genera Desulfurobacterium and Persephonella were prevalent in the Broken Spur chimney.


Epsilonproteobacteria Aquificales ANME ATP citrate lyase Black smoker Deep-sea vent rTCA cycle 



We wish to thank the crew of R/V Atlantis, and the crew and pilots of the deep-submergence vehicle Alvin, for their skilled operations at sea. We thank Nicole LeFur for technical assistance and Ken Takai (Japan Agency for Marine-Earth Science and Technology) for kindly making genomic DNA of H. thermophila, L. acidiphila, S. autotrophica, and S. lithotrophicum available to us. This research was supported by NSF grants MCB 04–56676 (C.V.), OCE 03–27353 (C.V.), MCB 04–56689 (S.M.S.), a grant from the New Jersey Agricultural Experiment Station to C.V., and a NIH Ph.D. Training Program in Biotechnology Fellowship (NIH NIGMS 5 T32 GM08339) to J.V. M.H. was supported through a postdoctoral scholarship from the Woods Hole Oceanographic Institution.

Supplementary material

792_2008_167_MOESM1_ESM.doc (56 kb)
Table S1. Number of clones examined for each library (DOC 56 kb)


  1. Alain K, Olagnon M, Desbruyeres D, Page A, Barbier G, Juniper SK, Querellou J, Cambon-Bonavita MA (2002a) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476CrossRefGoogle Scholar
  2. Alain K, Querellou J, Lesongeur F, Pignet P, Crassous P, Raguenes G, Cueff V, Cambon-Bonavita MA (2002b) Caminibacter hydrogeniphilus gen. nov., sp nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323PubMedCrossRefGoogle Scholar
  3. Alain K, Zbinden M, Le Bris N, Lesongeur F, Querellou J, Gaill F, Cambon-Bonavita MA (2004) Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6:227–241PubMedCrossRefGoogle Scholar
  4. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736PubMedCrossRefGoogle Scholar
  5. Bodrossy L, Kovacs KL, McDonald IR, Murrell JC (1999) A novel thermophilic methane-oxidising gamma-Proteobacterium. FEMS Microbiol Lett 170:335–341Google Scholar
  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  7. Buchanan BB, Arnon DI (1990) A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24:47–53PubMedCrossRefGoogle Scholar
  8. Campbell BJ, Cary SC (2004) Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 70:6282–6289PubMedCrossRefGoogle Scholar
  9. Campbell BJ, Stein JL, Cary SC (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078PubMedCrossRefGoogle Scholar
  10. Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile epsilon-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468PubMedCrossRefGoogle Scholar
  11. Charlou JL, Fouquet Y, Bougault H, Donval JP, Etoubleau J, Jean-Baptiste P, Dapoigny A, Appriou P, Rona PA (1998) Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochim Cosmochim Acta 62:2323–2333CrossRefGoogle Scholar
  12. Charlou JL, Donval JP, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H-2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  13. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  14. Douville E, Charlou JL, Oelkers EH, Bienvenu P, Colon CFJ, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48CrossRefGoogle Scholar
  15. Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC (1997) Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Biol Biotechnol 6:268–277PubMedGoogle Scholar
  16. Ferrera I, Longhorn S, Banta AB, Liu Y, Preston D, Reysenbach AL (2007) Diversity of 16S rRNA gene, ITS region and aclB gene of the Aquificales. Extremophiles 11:57–64PubMedCrossRefGoogle Scholar
  17. Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  18. Haddad A, Camacho F, Durand P, Cary SC (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61:1679–1687PubMedGoogle Scholar
  19. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826PubMedCrossRefGoogle Scholar
  20. Hoek J, Banta A, Hubler F, Reysenbach A (2003) Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology 1:119–127CrossRefGoogle Scholar
  21. Holmes AJ, Kelly DP, Baker SC, Thompson AS, De Marco P, Kenna EM, Murrell JC (1997) Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 167:46–53PubMedCrossRefGoogle Scholar
  22. Huber H, Jannasch HW, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthemophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380Google Scholar
  23. Hügler M, Huber H, Stetter KO, Fuchs G (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173PubMedGoogle Scholar
  24. Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the epsilon subdivision of proteobacteria. J Bacteriol 187:3020–3027PubMedCrossRefGoogle Scholar
  25. Hügler M, Huber H, Molyneaux SJ, Vetriani C, Sievert SM (2007) Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol 9:81–92PubMedCrossRefGoogle Scholar
  26. Inagaki F, Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003) Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53:1801–1805PubMedCrossRefGoogle Scholar
  27. Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54:1477–1482PubMedCrossRefGoogle Scholar
  28. Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294CrossRefGoogle Scholar
  29. L’Haridon S, Reysenbach AL, Tindall BJ, Schonheit P, Banta A, Johnsen U, Schumann P, Gambacorta A, Stackebrandt E, Jeanthon C (2006) Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. Int J Syst Evol Microbiol 56:2843–2852PubMedCrossRefGoogle Scholar
  30. Longnecker K, Reysenbach AL (2001) Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293PubMedGoogle Scholar
  31. Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976PubMedCrossRefGoogle Scholar
  32. Luijten ML, de Weert J, Smidt H, Boschker HT, de Vos WM, Schraa G, Stams AJ (2003) Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. Int J Syst Evol Microbiol 53:787–793PubMedCrossRefGoogle Scholar
  33. Marques AFA, Barriga F, Chavagnac V, Fouquet Y (2006) Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge. Mineralium Deposita 41:52–67CrossRefGoogle Scholar
  34. Matsuo Y, Suzuki M, Kasai H, Shizuri Y, Harayama S (2003) Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum. Environ Microbiol 5:25–35PubMedCrossRefGoogle Scholar
  35. Miroshnichenko ML, Bonch-Osmolovskaya EA (2006) Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents. Extremophiles 10:85–96PubMedCrossRefGoogle Scholar
  36. Miroshnichenko ML, Kostrikina NA, L’Haridon S, Jeanthon C, Hippe H, Stackebrandt E, Bonch-Osmolovskaya EA (2002) Nautilia lithotrophica gen. nov., sp nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep- sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304PubMedCrossRefGoogle Scholar
  37. Miroshnichenko ML, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, Jeanthon C, Stackebrandt E (2004) Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45PubMedCrossRefGoogle Scholar
  38. Nakagawa T, Nakagawa S, Inagaki F, Takai K, Horikoshi K (2004) Phylogenetic diversity of sulfate-reducing prokaryotes in active deep-sea hydrothermal vent chimney structures. FEMS Microbiol Lett 232:145–152PubMedCrossRefGoogle Scholar
  39. Nercessian O, Reysenbach AL, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ Microbiol 5:492–502PubMedCrossRefGoogle Scholar
  40. Nercessian O, Bienvenu N, Moreira D, Prieur D, Jeanthon C (2005a) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7:118–132PubMedCrossRefGoogle Scholar
  41. Nercessian O, Fouquet Y, Pierre C, Prieur D, Jeanthon C (2005b) Diversity of Bacteria and Archaea associated with a carbonate-rich metalliferous sediment sample from the Rainbow vent field on the Mid-Atlantic Ridge. Environ Microbiol 7:698–714PubMedCrossRefGoogle Scholar
  42. Orphan VJ, Hinrichs KU, Ussler W, 3rd Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934PubMedCrossRefGoogle Scholar
  43. Orphan VJ, House CH, Hinrichs KU, McKeegan KD, DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668PubMedCrossRefGoogle Scholar
  44. Perner M, Kuever J, Seifert R, Pape T, Koschinsky A, Schmidt K, Strauss H, Imhoff JF (2007) The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge. FEMS Microbiol Ecol 61(1):97–109Google Scholar
  45. Pikuta EV, Zhilina TN, Zavaring GA, Kostrikina NA, Osipov GA (1998) Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology 67:105–113Google Scholar
  46. Reed AJ, Lutz RA, Vetriani C (2006) Vertical distribution and diversity of bacteria and archaea in sulfide and methane-rich cold seep sediments located at the base of the Florida Escarpment. Extremophiles 10:199–211PubMedCrossRefGoogle Scholar
  47. Reysenbach AL, Longnecker K, Kirshtein J (2000) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806PubMedCrossRefGoogle Scholar
  48. Schmidt K, Koschinsky-Fritsche A, Garbe-Schonberg D (2006) Detailed geochemical investigation of hydrothermal fluids from the Logatchev field, 15 degrees N, MAR. Geochim Cosmochim Acta 70:A563–A563Google Scholar
  49. Schrenk MO, Kelley DS, Delaney JR, Baross JA (2003) Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl Environ Microbiol 69:3580–3592PubMedCrossRefGoogle Scholar
  50. Sorokin DY, Tourova TP, Kolganova TV, Sjollema KA, Kuenen JG (2002) Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182PubMedCrossRefGoogle Scholar
  51. Stetter KO, König H, Stackebrandt E (1983) Pyrodictium, a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst Appl Microbiol 4:535–551Google Scholar
  52. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S (2001) Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51:1639–1652PubMedGoogle Scholar
  53. Suzuki Y, Inagaki F, Takai K, Nealson KH, Horikoshi K (2004) Microbial diversity in inactive chimney structures from deep-sea hydrothermal systems. Microb Ecol 47:186–96PubMedCrossRefGoogle Scholar
  54. Takai K, Horikoshi K (1999) Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297PubMedGoogle Scholar
  55. Takai K, Komatsu T, Inagaki F, Horikoshi K (2001) Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629PubMedCrossRefGoogle Scholar
  56. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2004a) Thiomicrospira thermophila sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithomixotroph isolated from a deep-sea hydrothermal fumarole in the TOTO caldera, Mariana Arc, Western Pacific. Int J Syst Evol Microbiol 54:2325–2333PubMedCrossRefGoogle Scholar
  57. Takai K, Nealson KH, Horikoshi K (2004b) Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32PubMedCrossRefGoogle Scholar
  58. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, Horikoshi K (2005a) Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol 71:7310–7320PubMedCrossRefGoogle Scholar
  59. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson KH, Horikoshi K (2005b) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189PubMedCrossRefGoogle Scholar
  60. Teske A, Hinrichs KU, Edgcomb V, Gomez AD, Kysela D, Sylva SP, Sogin ML, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007PubMedCrossRefGoogle Scholar
  61. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  62. Vetriani C, Speck MD, Ellor SV, Lutz RA, Starovoytov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181PubMedCrossRefGoogle Scholar
  63. Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • James W. Voordeckers
    • 1
    • 2
  • My H. Do
    • 1
    • 2
  • Michael Hügler
    • 3
    • 4
  • Vivian Ko
    • 1
    • 2
  • Stefan M. Sievert
    • 3
  • Costantino Vetriani
    • 1
    • 2
  1. 1.Department of Biochemistry and MicrobiologyRutgers UniversityNew BrunswickUSA
  2. 2.Institute of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA
  3. 3.Woods Hole Oceanographic Institution, Woods HoleMassachusettsUSA
  4. 4.Leibniz Institute of Marine Sciences, IFM-GEOMARKielGermany

Personalised recommendations