Extremophiles

, Volume 12, Issue 3, pp 311–323 | Cite as

The cold-active Lip1 lipase from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family

  • Donatella de Pascale
  • Angela M. Cusano
  • Flavia Autore
  • Ermenegilda Parrilli
  • Guido di Prisco
  • Gennaro Marino
  • M. Luisa Tutino
Original Paper

Abstract

The genome of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 was searched for the presence of genes encoding ester-hydrolysing enzymes. Amongst the others, the gene PSHAa0051 coding for a putative secreted esterase/lipase was selected. The psychrophilic gene was cloned, functionally over-expressed in P. haloplanktis TAC125, and the recombinant product (after named PhTAC125 Lip1) was purified. PhTAC125 Lip1 was found to be associated to the outer membrane and exhibited higher enzymatic activity towards synthetic substrates with long acyl chains. A structural model was constructed using the structure of carboxylesterase Est30 from Geobacillus stearothermophilus as template. The model covered the central part of the protein with the exceptions of PhTAC125 Lip1 N- and C-terminal regions, where the psychrophilic protein displays extra-domains. The constructed model showed a typical α/β-hydrolase fold, and confirmed the presence of a canonical catalytic triad consisting of Ser, Asp and His. The sequence analysis showed that PhTAC125 Lip1 is distantly related to other lipolytic enzymes, but closely related to other putative psychrophilic esterases/lipases. The aligned proteins share common features, such as: (1) a conserved new active-site pentapeptide motif (LGG(F/L/Y)STG); (2) the likely extra-cytoplasmic localization, (3) the absence of a typical calcium-binding pocket, and (4) the absence of a canonical lid. These observations strongly suggest that aligned proteins constitute a novel lipase family, typical of psychrophilic marine γ-proteobacteria, and PhTAC125 Lip1 could be considered the first characterised member of this family.

Keywords

Pseudoalteromonashaloplanktis TAC125 Psychrophilic bacterial strain α/β Hydrolase 

Supplementary material

792_2008_163_MOESM1_ESM.tif (83 kb)
TABLE S1: Homologous sequences used as data set in phylogenetic analysis (TIF 82 kb)

References

  1. Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552PubMedCrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Arpigny JL, Lamotte J, Gerday C (1997) Molecular adaptation to cold of an Antarctic bacterial lipase. J Mol Catal B-Enzym 3:29–35CrossRefGoogle Scholar
  4. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183PubMedCrossRefGoogle Scholar
  5. Aurilia V, Parracino A, Saviano M, Rossi M, D’Auria S (2007) The psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 possesses a gene coding for a cold-adapted feruloyl esterase activity that shares homology with esterase enzymes from γ-proteobacteria and yeast. Gene 397:51–57PubMedCrossRefGoogle Scholar
  6. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037–10041PubMedCrossRefGoogle Scholar
  7. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  8. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the Gram-negative bacterial outer membrane. Annu Rev Microbiol. doi:10.1146/annurev.micro.61.080706.093245
  9. Choo DW, Kurihara T, Suzuki T, Soda K, Esaki N (1998) A cold adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11–1: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 64:486–491PubMedGoogle Scholar
  10. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890PubMedCrossRefGoogle Scholar
  11. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ (1998) Jpred: a consensus secondary structure prediction server. Bioinformatics 14:892–893PubMedCrossRefGoogle Scholar
  12. D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389PubMedCrossRefGoogle Scholar
  13. Diaz P, Prim N, Pastor FIJ (1999) Direct fluorescence-based lipase activity assay. BioTechniques 27:696–677PubMedGoogle Scholar
  14. Duilio A, Tutino ML, Marino G (2004) Recombinant protein production in Antarctic Gram-negative bacteria. Methods Mol Biol 267:225–237PubMedGoogle Scholar
  15. Ewis HE, Abdelal AT, Lu CD (2004) Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus. Gene 329:187–195PubMedCrossRefGoogle Scholar
  16. Fraternali F, Cavallo L (2002) Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Nucleic Acids Res 30:2950–2960PubMedCrossRefGoogle Scholar
  17. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedCrossRefGoogle Scholar
  18. Handrick R, Reinhardt S, Focarete ML, Scandola M, Adamus G, Kowalczuk M, Jendrossek D (2001) A new type of thermoalkalophilic hydrolase of Paucimonas lemoignei with high specificity for amorphous polyesters of short chain-length hydroxylalkanoic acids. J Biol Chem 276:36215–36224PubMedCrossRefGoogle Scholar
  19. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–10919PubMedCrossRefGoogle Scholar
  20. Holmstrom C, James S, Neilan BA, White DC, Kjelleberg S (1998) Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 48:1205–1212PubMedCrossRefGoogle Scholar
  21. Iwai M, Tsujisaka Y, Fukumoto J (1964) Studies on lipase III. Effect of calcium ion on the action of the crystalline lipase from Aspergillus niger. J Gen Appl Microbiol 10:87–93CrossRefGoogle Scholar
  22. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O (1994) Bacterial lipase. FEMS Microbiol Rev 15:29–63PubMedCrossRefGoogle Scholar
  23. Jaeger KE, Reetz M (1998) Microbial lipases from versatile tools for biotechnology. Trends Biotechnol 16:396–403PubMedCrossRefGoogle Scholar
  24. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351PubMedCrossRefGoogle Scholar
  25. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397PubMedCrossRefGoogle Scholar
  26. Jeong H, Yim JH, Lee C, Choi SH, Park YK, Yoon SH, Hur CG, Kang HY, Kim D, Lee HH, Park KH, Park SH, Park HS, Lee HK, Oh TK, Kim JF (2005) Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res 33:7066–7073PubMedCrossRefGoogle Scholar
  27. Kwoun KH, Jung YJ, Choi WC, Ryu HS, Oh TK, Lee JK (2004) Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol Lett 235:349–355CrossRefGoogle Scholar
  28. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  29. Levisson M, van der Oost, Kengen SWM (2007) Characterization and structural modeling of a new type of thermostable esterase from Thermotoga maritima. FEBS 274:2832–2842CrossRefGoogle Scholar
  30. Liu P, Wang YF, Ewis HE, Abdelal AT, Lu CD, Harrison RW, Weber IT (2004) Covalent reaction intermediate revealed in crystal structure of the Geobacillus stearothermophilus carboxylesterase Est30. J Mol Biol 342:551–561PubMedCrossRefGoogle Scholar
  31. Manco G, Di Gennaro S, De Rosa M, Rossi M (1994) Purification and characterization of a thermostable carboxylesterase from the thermoacidophilic eubacterium Bacillus acidocaldarius. Eur J Biochem 221:65–72CrossRefGoogle Scholar
  32. Margesin R, Schimner F (1994) Properties of cold adapted microorganisms and their role in biotechnology. J Biotechnol 33:1–4CrossRefGoogle Scholar
  33. Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325PubMedCrossRefGoogle Scholar
  34. Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E., Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335PubMedCrossRefGoogle Scholar
  35. Mèthe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918PubMedCrossRefGoogle Scholar
  36. Nardini M, Dijkstra BW (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737PubMedCrossRefGoogle Scholar
  37. Papa R, Rippa V, Sannia G, Marino G, Duilio A (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127:199–210PubMedCrossRefGoogle Scholar
  38. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90PubMedCrossRefGoogle Scholar
  39. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  40. van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature 362:814–820PubMedCrossRefGoogle Scholar
  41. Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38CrossRefGoogle Scholar
  42. Wilheilm S, Tomassen J, Jaeker KE (1999) A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–6986Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Donatella de Pascale
    • 1
  • Angela M. Cusano
    • 2
  • Flavia Autore
    • 2
  • Ermenegilda Parrilli
    • 2
    • 3
  • Guido di Prisco
    • 1
  • Gennaro Marino
    • 2
    • 3
  • M. Luisa Tutino
    • 2
    • 3
  1. 1.Institute of Protein Biochemistry, CNRNaplesItaly
  2. 2.Department of Organic Chemistry and BiochemistryUniversity of Naples Federico II, Complesso Universitario, Monte Sant’AngeloNaplesItaly
  3. 3.School of Biotechnological SciencesUniversity of Naples Federico II, Complesso Universitario Monte Sant’AngeloNaplesItaly

Personalised recommendations