Extremophiles

, Volume 12, Issue 4, pp 519–527 | Cite as

Phylogenetic and enzymatic diversity of deep subseafloor aerobic microorganisms in organics- and methane-rich sediments off Shimokita Peninsula

  • Tohru Kobayashi
  • Osamu Koide
  • Kozue Mori
  • Shigeru Shimamura
  • Takae Matsuura
  • Takeshi Miura
  • Yoshihiro Takaki
  • Yuki Morono
  • Takuro Nunoura
  • Hiroyuki Imachi
  • Fumio Inagaki
  • Ken Takai
  • Koki Horikoshi
Original Paper

Abstract

“A meta-enzyme approach” is proposed as an ecological enzymatic method to explore the potential functions of microbial communities in extreme environments such as the deep marine subsurface. We evaluated a variety of extra-cellular enzyme activities of sediment slurries and isolates from a deep subseafloor sediment core. Using the new deep-sea drilling vessel “Chikyu”, we obtained 365 m of core sediments that contained ∼2% organic matter and considerable amounts of methane from offshore the Shimokita Peninsula in Japan at a water depth of 1,180 m. In the extra-sediment fraction of the slurry samples, phosphatase, esterase, and catalase activities were detected consistently throughout the core sediments down to the deepest slurry sample from 342.5 m below seafloor (mbsf). Detectable enzyme activities predicted the existence of a sizable population of viable aerobic microorganisms even in deep subseafloor habitats. The subsequent quantitative cultivation using solid media represented remarkably high numbers of aerobic, heterotrophic microbial populations (e.g., maximally 4.4 × 107 cells cm−3 at 342.5 mbsf). Analysis of 16S rRNA gene sequences revealed that the predominant cultivated microbial components were affiliated with the genera Bacillus, Shewanella, Pseudoalteromonas, Halomonas, Pseudomonas, Paracoccus, Rhodococcus, Microbacterium, and Flexibacteracea. Many of the predominant and scarce isolates produced a variety of extra-cellular enzymes such as proteases, amylases, lipases, chitinases, phosphatases, and deoxyribonucleases. Our results indicate that microbes in the deep subseafloor environment off Shimokita are metabolically active and that the cultivable populations may have a great potential in biotechnology.

Keywords

Deep subseafloor biosphere Subseafloor sediment Aerobic bacteria Meta-enzyme Methane hydrate 

Supplementary material

792_2008_157_MOESM1_ESM.ppt (775 kb)
(PPT 775 kb)

References

  1. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, Parkes RJ (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521PubMedCrossRefGoogle Scholar
  2. Batzke A, Engelen B, Sass H, Cypionka H (2007) Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from equatorial Pacific Ocean and Peru margin sediments. Geomicrobiol J 24:261–273CrossRefGoogle Scholar
  3. Biddle JF, House CH, Brenchley JE (2005) Microbial stratification in deeply buried marine sediment reflects changes in sulfate/methane profiles. Geobiology 3:287–295CrossRefGoogle Scholar
  4. Boschker HTS, Cappenberg TE (1998) Patterns of extracellular enzyme activities in littoral sediments of Lake Gooimeer, The Netherland. FEMS Microbiol Ecol 25:79–86CrossRefGoogle Scholar
  5. D’Hondt S, Rutherfold S, Spivack AJ (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070PubMedCrossRefGoogle Scholar
  6. D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H, Dickens GR, Ferdelman T, Hinrichs K-U, Holm NG, Mitterer R, Spivack A, Wang G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG, Ailleo IW, Guerin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS (2004) Distribution of microbial activities in deep subseafloor sediments. Science 306:2216–2221PubMedCrossRefGoogle Scholar
  7. Hoppe H-G (2003) Phosphatase activity in the sea. Hydrobiologia 493:187–200CrossRefGoogle Scholar
  8. Inagaki F, Suzuki M, Takai K, Oida H, Sakamoto T, Aoki K, Nealson K, Horikoshi K (2003) Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235PubMedCrossRefGoogle Scholar
  9. Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever A, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jørgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc Natl Acad Sci USA 103:2815–2820PubMedCrossRefGoogle Scholar
  10. Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529PubMedCrossRefGoogle Scholar
  11. Kormas KA, Smith DC, Edgcomb V, Teske A (2003) Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol 45:115–125CrossRefPubMedGoogle Scholar
  12. Lane DJ (1991) 16S/23S sequencing. In: Stackbrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–176Google Scholar
  13. Ludwig W, Strunk O, Westram R, Richter L, Yadhukumar HM, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  14. Mikuchi JA, Liu Y, Delwiche M, Colwell FS, Boone DR (2003) Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarines sp. nov. Appl Environ Microbiol 69:3311–3316CrossRefGoogle Scholar
  15. Newberry CJ, Webster G, Cragg BA, Parkes RJ, Weightman AJ, Fry JC (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287PubMedCrossRefGoogle Scholar
  16. Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, Fry JC, Weightman AJ, Harvey SM (1994) Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410–413CrossRefGoogle Scholar
  17. Parkes RJ, Cragg BA, Wellsbury P (2000) Recent studies on bacterial populations and progresses in subseafloor sediments: a review. Hydrogeol J 8:11–28CrossRefGoogle Scholar
  18. Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394PubMedCrossRefGoogle Scholar
  19. Poremba K, Hoppe H-G (1995) Spatial variation of benthic microbial production and hydrolytic enzymatic activity down the continental slope of the Celtic Sea. Mar Ecol Prog Ser 118:237–245CrossRefGoogle Scholar
  20. Reed DW, Fujita Y, Delwiche ME, Blackwelder DB, Sheridan PP, Uchida T, Colwell FS (2002) Microbial communities from methane hydrate-bearing deep marine sediments in a forearc basin. Appl Environ Microbiol 68:3759–3770PubMedCrossRefGoogle Scholar
  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  22. Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861–864PubMedCrossRefGoogle Scholar
  23. Sørensen KB, Teske A (2006) Stratified communities of active archaea in deep marine subsurface sediments. Appl Environ Microbiol 72:4596–4603PubMedCrossRefGoogle Scholar
  24. Süß J, Engelen B, Cypionka H, Sass H (2004) Quantitative analysis of bacterial communities from Mediterranean sapropels based on cultivation-dependent methods. FEMS Microbiol Ecol 51:109–121PubMedCrossRefGoogle Scholar
  25. Taira A (2005) Shimokita area site survey: Northern Japan Trench seismic survey, northern Honshu, Japan. CDEX Tech Rep Vol. 2, pp 155. Available from: http://sio7.jamstec.go.jp/publication/pdf/TechRep/CDEXTRV02.pdf
  26. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  27. Wellsbury P, Goodman K, Cragg BA, Parkes RJ (2000) The geomicrobiology of deep marine sediments from Black Ridge containing methane hydrate (sites 994, 995, and 997) In: Paul CK, Matsumoto R, Wallace PJ, Dillon WP (eds) Proc ODP Sci Results 164, vol 164. Ocean Drilling Program, College Station, TX, pp 379–391CrossRefGoogle Scholar
  28. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583PubMedCrossRefGoogle Scholar
  29. Wobus A, Bleul C, Maassen S, Scheerer C, Schuppler M, Jacobs E, Röske I (2003) Microbial diversity and functional characterization of sediments from reservoirs of different trophic states. FEMS Microb Ecol 46:331–347CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Tohru Kobayashi
    • 1
  • Osamu Koide
    • 1
  • Kozue Mori
    • 1
  • Shigeru Shimamura
    • 1
  • Takae Matsuura
    • 2
  • Takeshi Miura
    • 1
  • Yoshihiro Takaki
    • 1
  • Yuki Morono
    • 1
    • 3
  • Takuro Nunoura
    • 1
  • Hiroyuki Imachi
    • 1
  • Fumio Inagaki
    • 1
    • 3
  • Ken Takai
    • 1
  • Koki Horikoshi
    • 1
  1. 1.Extremobiosphere Research Center of Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringToyo UniversitySaitamaJapan
  3. 3.Kochi Institute for Core Sample ResearchJAMSTECKochiJapan

Personalised recommendations