, Volume 12, Issue 4, pp 529–539 | Cite as

Novel halophilic aerobic anoxygenic phototrophs from a Canadian hypersaline spring system

  • Julius T. Csotonyi
  • Jolantha Swiderski
  • Erko Stackebrandt
  • Vladimir V. Yurkov
Original Paper


The first enumeration of cultivable obligately aerobic phototrophic bacteria from a terrestrial saline spring was accomplished in the East German Creek system (salinity ∼6%), near Lake Winnipegosis, Manitoba, Canada. Occurring at densities up to 3.3 × 107 CFU/ml of sample, aerobic phototrophs comprised 15–36% of the total cultivable bacterial population in the diatom- and chlorophyte-dominated aerobic microbial mats. Many of the representative strains isolated for phenotypic characterization and phylogenetic analysis possessed <96% 16S rDNA sequence overlap with published species, including an obligately aerobic phototrophic gammaproteobacterium displaying only 92.9% 16S rDNA sequence similarity to Congregibacter litoralis. The springs yielded the most highly halotolerant aerobic anoxygenic phototroph yet recorded, strain EG11, which grew with 26% NaCl.


Aerobic anoxygenic phototrophs Phototrophic halophiles Hypersaline springs Bacteriochlorophyll Physiology 



Kathleen Londry and Pascal Badiou kindly provided identification of Percursaria percursa. This research was supported by a Natural Science and Engineering Research Council (NSERC) operating grant held by V. Yurkov.


  1. Biebl H, Wagner-Döbler I (2006) Growth and bacteriochlorophyll a formation in taxonomically diverse aerobic anoxygenic phototrophic bacteria in chemostat culture: influence of light regimen and starvation. Process Biochem 41:2153–2159CrossRefGoogle Scholar
  2. Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL, Nichols DS, McMeekin TA (1998) Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609PubMedCrossRefGoogle Scholar
  3. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  4. Felsenstein J (1993) PHYLIP (phylogenetic inference package), version 3.5.1. Department of Genetics, University of Washington, SeattleGoogle Scholar
  5. Fuchs BM, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glockner FO, Amann R (2007) Characterization of a marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896PubMedCrossRefGoogle Scholar
  6. Gauthier G, Gauthier M, Christen R (1995) Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45:755–761PubMedGoogle Scholar
  7. Grasby SE (2000) Saline spring geochemistry, west-central Manitoba. In: Report of activities 2000. Manitoba Industry, Trade and Mines, Manitoba Geological Survey, Winnipeg, pp 214–216Google Scholar
  8. Guyoneaud R, Moune S, Eatock C, Bothorel V, Hirschler-Rea A, Willison J, Duran R, Liesack W, Herbert R, Matheron R, Caumette P (2002) Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178:315–324PubMedCrossRefGoogle Scholar
  9. Hiraishi A, Shimada K (2001) Aerobic anoxygenic photosynthetic bacteria with zinc-bacteriochlorophyll. J Gen Appl Microbiol 47:161–180PubMedCrossRefGoogle Scholar
  10. Imhoff JF (2001) The phototrophic alpha-Proteobacteria. In: Dworkin M et al. (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.6, June 22, 2001. Springer-Verlag, New York.
  11. Imhoff JF (2003) The Chromatiaceae. In: Dworkin M et al (eds) The prokaryotes: an evolving electronic resource for the microbiological community, release 3.13, May 12, 2003. Springer-Verlag, New York.
  12. Jiao N, Yang Y, Luo T (2004) Membrane potential based characterization by flow cytometry of physiological states in an aerobic anoxygenic phototrophic bacterium. Aquat Microb Ecol 37:149–158CrossRefGoogle Scholar
  13. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P, Hirsch P (1999) Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147PubMedGoogle Scholar
  14. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P (2005) Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing α-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47PubMedCrossRefGoogle Scholar
  15. Lee K, Choo Y-J, Giovannoni SJ, Cho JC (2007) Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol 57:1653–1658PubMedCrossRefGoogle Scholar
  16. Londry KL, Badiou PH, Grasby SE (2005) Identification of a marine green alga Percursaria percursa from hypersaline springs in the middle of the North American continent. Can Field Nat 119:82–87Google Scholar
  17. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  18. Maidak BL, Cole JR, Parker CT Jr, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173PubMedCrossRefGoogle Scholar
  19. McKillop WB, Patterson RT, Delorme LD, Nogrady T (1992) The origin, physico-chemistry and biotics of sodium chloride dominated saline waters on the western shore of Lake Winnipegosis, Manitoba. Can Field Nat 106:454–473Google Scholar
  20. Patterson RT, McKillop WB, Kroker S, Nielson E, Reinhardt EG (1997) Evidence for rapid avian-mediated foraminiferal colonization of Lake Winnipegosis, Manitoba, during the Holocene Hypsithermal. J Paleolimnol 18:131–143CrossRefGoogle Scholar
  21. Pfennig N, Trüper HG (1992) The family Chromatiaceae. In: Balow A, Trüper HG, Dworkin M, Harder W, Schleifer K-Z (eds) The prokaryotes, 2nd edn. Springer-Verlag, Berlin, pp 3200–3221Google Scholar
  22. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092PubMedGoogle Scholar
  23. Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128CrossRefGoogle Scholar
  24. Shiba T, Shioi Y, Takamiya K, Sutton DC, Wilkinson CR (1991) Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microbiol 57:295–300PubMedGoogle Scholar
  25. Sorokin DY, Tourova TP, Spiridonova EM, Rainey FA, Muyzer G (2005) Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol 55:1069–1075PubMedCrossRefGoogle Scholar
  26. Stadtwald-Demchick R, Turner FR, Gest H (1990) Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67:139–144CrossRefGoogle Scholar
  27. Trüper HG, Pfennig N (1992) The family Chlorobiaceae. In: Balow A, Trüper HG, Dworkin M, Harder W, Schleifer K-Z (eds) The prokaryotes, 2nd edn. Springer-Verlag, Berlin, pp 3583–3592Google Scholar
  28. Van Trappen S, Mergaert J, Swings J (2004) Loktanella salsilacus gen. nov., sp. nov., Loktanella fryxellensis sp. nov. and Loktanella vestfoldensis sp. nov., new members of the Rhodobacter group, isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 54:1263–1269PubMedCrossRefGoogle Scholar
  29. Yurkov V (2006) Aerobic phototrophic proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) Prokaryotes, 3rd edn. Springer, Berlin, pp 562–584Google Scholar
  30. Yurkov VV, Csotonyi JT (2003) Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. In: Pandalai SG (ed) Recent research developments in bacteriology, vol 1. Transworld Research Network, Trivandrum, pp 247–300Google Scholar
  31. Yurkov V, Csotonyi JT (in press) New light on aerobic anoxygenic phototrophs. In: Govindjee (ed) Advances in photosynthesis and respiration. Springer, BerlinGoogle Scholar
  32. Yurkov V, van Gemerden H (1993) Abundance and salt tolerance of obligately aerobic, phototrophic bacteria in a marine microbial mat. Neth J Sea Res 31:57–62CrossRefGoogle Scholar
  33. Yurkov V, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181:4517–4525PubMedGoogle Scholar
  34. Yurkova N, Rathgeber C, Swiderski J, Stackebrandt E, Beatty JT, Hall KJ, Yurkov V (2002) Diversity, distribution and physiology of the aerobic phototrophic bacteria in the mixolimnion of a meromictic lake. FEMS Microbiol Ecol 40:191–204CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Julius T. Csotonyi
    • 1
  • Jolantha Swiderski
    • 2
  • Erko Stackebrandt
    • 2
  • Vladimir V. Yurkov
    • 1
  1. 1.Department of MicrobiologyUniversity of ManitobaWinnipegCanada
  2. 2.DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweigGermany

Personalised recommendations