, Volume 12, Issue 4, pp 491–504 | Cite as

Novelty and spatio–temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama)

  • Cecilia Demergasso
  • Lorena Escudero
  • Emilio O. CasamayorEmail author
  • Guillermo Chong
  • Vanessa Balagué
  • Carlos Pedrós-Alió
Original Paper


Lake Tebenquiche is one of the largest saline water bodies in the Salar de Atacama at 2,500 m above sea level in northeastern Chile. Bacteria inhabiting there have to deal with extreme changes in salinity, temperature and UV dose (i.e., high environmental dissimilarity in the physical landscape). We analyzed the bacterioplankton structure of this lake by 16S rRNA gene analyses along a spatio–temporal survey. The bacterial assemblage within the lake was quite heterogeneous both in space and time. Salinity changed both in space and time ranging between 1 and 30% (w/v), and total abundances of planktonic prokaryotes in the different sampling points within the lake ranged between two and nine times 106 cells mL−1. Community composition changed accordingly to the particular salinity of each point as depicted by genetic fingerprinting analyses (denaturing gradient gel electrophoresis), showing a high level of variation in species composition from place to place (beta-diversity). Three selected sites were analyzed in more detail by clone libraries. We observed a predominance of Bacteroidetes (about one third of the clones) and Gammaproteobacteria (another third) with respect to all the other bacterial groups. The diversity of Bacteroidetes sequences was large and showed a remarkable degree of novelty. Bacteroidetes formed at least four clusters with no cultured relatives in databases and rather distantly related to any known 16S rRNA sequence. Within this phylum, a rich and diverse presence of Salinibacter relatives was found in the saltiest part of the lake. Lake Tebenquiche included several novel microorganisms of environmental importance and appeared as a large unexplored reservoir of unknown bacteria.


16S rRNA gene Bacteroidetes Biodiversity Clone libraries DGGE Ecology Extremophiles Fingerprinting Gammaproteobacteria Hypersaline Salar Salt lake Tebenquiche 



Sampling and measurements carried out in Chile were funded by grants FONDECYT 1030441 and FONDEF D99I1026. Measurements carried out in Barcelona were funded by grant “ATACAMA-2002” (CICYT, BOS2002-10258-E). Grant “BIOARSENICO” from Fundación BBVA funds current work in both laboratories. EOC was supported by the Programa Ramón y Cajal and REN2003-08333, and VB by grant GENμMAR (CTM2004-02586/MAR), both from the Spanish Ministerio de Educación y Ciencia. LEG was supported by the Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile. We thank Juan José Pueyo for suggestions to improve the manuscript.


  1. Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169PubMedGoogle Scholar
  2. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  3. Baldauf S (2003) The deep roots of eukaryotes. Science 300:1703–1706PubMedCrossRefGoogle Scholar
  4. Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F (2001) Archaeal Biodiversity in Crystallizer Ponds from a Solar Saltern: Culture versus PCR. Microb Ecol 41:12–19PubMedGoogle Scholar
  5. Benlloch S, Acinas SG, Martínez-Murcia A, Rodríguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31CrossRefGoogle Scholar
  6. Benlloch S, López-López A, Casamayor EO, Øvreas L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedCrossRefGoogle Scholar
  7. Bowman JP, McCammon SA, Rea SM, McMeekin TA (2000) The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol Lett 183:81–88PubMedCrossRefGoogle Scholar
  8. Carmona V, Pueyo JJ, Taberner C, Chong G, Thirlwall M (2000) Solute inputs in the Salar de Atacama (N. Chile). J Geochem Explor 69:449–452CrossRefGoogle Scholar
  9. Casamayor E, Muyzer G, Pedrós-Alió C (2001) Composition and temporal dynamics of planktonic archaeal assemblages from anaerobic sulfurous environments studied by 16S rDNA Denaturing Gradient Gel Electrophoresis and sequencing. Aquat Microb Ecol 25:237–246CrossRefGoogle Scholar
  10. Casamayor EO, Calderón-Paz JI, Pedrós-Alió C (2000) 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119PubMedCrossRefGoogle Scholar
  11. Casamayor EO, Massana R, Benlloch S, Øvreas L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348PubMedCrossRefGoogle Scholar
  12. Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122PubMedCrossRefGoogle Scholar
  13. Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69CrossRefGoogle Scholar
  14. Dumestre JF, Casamayor EO, Massana R, Pedrós-Alió C (2002) Changes in bacterial and archaeal assemblages in an equatorial river induced by the water eutrophication of Petit Saut dam reservoir (French Guiana). Aquat Microb Ecol 26:209–221CrossRefGoogle Scholar
  15. Estrada M, Hendriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293CrossRefGoogle Scholar
  16. Ferrera I, Massana R, Casamayor EO, Balagué V, Sánchez O, Pedrós-Alió C, Mas J (2004) High-diversity biofilm for the oxidation of sulfide-containing effluents. Appl Microbiol Biotechnol 64:726–734PubMedCrossRefGoogle Scholar
  17. Gasol J, del Giorgio P (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci Mar 64:197–224Google Scholar
  18. Gasol J, Casamayor EO, Join I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206CrossRefGoogle Scholar
  19. Giovannoni S, Rappé M (2000) Evolution, diversity, and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley Interscience, New York, pp 47–84Google Scholar
  20. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63PubMedCrossRefGoogle Scholar
  21. Glöckner FO, Fuchs BM, Amann R (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726PubMedGoogle Scholar
  22. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042PubMedCrossRefGoogle Scholar
  23. Jiang H, Dong H, Zhang G, Yu B, Chapman L, Fields M (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845PubMedCrossRefGoogle Scholar
  24. Kunte H, Trüper H, Stan-Lotter H (2002) Halophilic microorganisms. In: Horneck G, Baumstark-Khan C (eds) Astrobiology, the quest for the conditions of life. Springer, Koln, pp 185–200Google Scholar
  25. Lizama C, Monteoliva-Sanchez M, Prado B, Ramos-Cormenzana A, Weckesser J, Campos V (2001) Taxonomic study of extreme halophilic archaea isolated from the “Salar de Atacama”, Chile. Syst Appl Microbiol 24:464–474PubMedCrossRefGoogle Scholar
  26. Lizama C, Monteoliva-Sánchez M, Suárez-García A, Roselló-Mora R, Aguilera M, Campos V, Ramos-Cormenzana A (2002) Halorubrum tebenquichense sp. nov., a novel halophilic archaeon isolated from the Atacama Saltern, Chile. Int J Syst Evol Microbiol 52:149–155PubMedGoogle Scholar
  27. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Stredwick JM, Garrity GM, Li B, Olsen GJ, Pramanik S, Schmidt TM, Tiedje JM (2000) The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174PubMedCrossRefGoogle Scholar
  28. Mancinelli R, Fahlen T, Landheim R, Klovstad M (2004) Brines and evaporates: analogs for Martian life. Adv Space Res 33:1244–1246CrossRefGoogle Scholar
  29. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the peruvian andes. Appl Environ Microbiol 72:3887–3895PubMedCrossRefGoogle Scholar
  30. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biot 28:56–63CrossRefGoogle Scholar
  31. Pedrós-Alió C (2005) Diversity of microbial communities: the case of solar salterns. In: Gunde-Cimerman N, Plemenitas A, Oren A (eds) Adaptations to life at high salt concentrations in archaea, bacteria, and eukarya. Cellular origins, life in extreme habitats and astrobiology (COLE) (Seckbach J, series editor), vol 9. Springer, Dordrecht, pp 71–90Google Scholar
  32. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263PubMedCrossRefGoogle Scholar
  33. Pedrós-Alió C (2007) Dipping into the rare biosphere. Perspect Sci 315:192–193Google Scholar
  34. Pommier T, Canback B, Riemann L, Bostrom KH, Simu K, Lundberg P, Tunlid A, Hagstrom A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol Ecol 16:867–880PubMedCrossRefGoogle Scholar
  35. Prado B, del Moral A, Quesada E, Ríos R, Monteoliva-Sánchez M, Campos V, Ramos-Cormezana A (1991) Numerical taxonomy of moderately halophilic Gram negative rods isolated from the Salar de Atacama, Chile. Syst Appl Microbiol 14:275–281Google Scholar
  36. Prado B, del Moral A, Campos V (1993) Distribution and Types of Heterotropic Halophilic Flora from Salar De Atacama, Chile. Toxicol Environ Chem 38:163–166CrossRefGoogle Scholar
  37. Prado B, Lizama C, Aguilera M, Ramos-Cormenzana A, Fuentes S, Campos V, Monteoliva-Sánchez M (2006) Chromohalobacter nigrandesensis sp. nov., a moderately halophilic, Gram-negative bacterium isolated from Lake Tebenquiche on the Atacama Saltern, Chile. Int J Syst Evol Microbiol 56:647–651PubMedCrossRefGoogle Scholar
  38. Risacher F, Alonso H (1996) Geochemistry of the Salar de Atacama. 2. Water evolution. Rev Geol Chile 23:123–134Google Scholar
  39. Risacher F, Alonso H, Salazar C (1999) Geoquímica de aguas en cuencas cerradas: I, II y III Regiones—Chile (Technical Report S.I.T. No. 51). Convenio de Cooperación DGA, UCN, IRD, Santiago, ChileGoogle Scholar
  40. Rodríguez-Valera F, Acinas S, Antón J (1999) Contribution of molecular techniques to the study of microbial diversity in hypersaline environments. In: Oren A (ed) Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, pp 27–38Google Scholar
  41. Sánchez O, Gasol J, Massana R, Mas J, Pedrós-Alió C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73:5962–5967PubMedCrossRefGoogle Scholar
  42. Schauer M, Massana R, Pedrós-Alió C (2000) Spatial differences in bacterioplankton composition along the Catalan coast (NW Mediterranean) assessed by molecular fingerprinting. FEMS Microbiol Ecol 33:51–59PubMedCrossRefGoogle Scholar
  43. Sorensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365PubMedCrossRefGoogle Scholar
  44. Staley J, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346PubMedCrossRefGoogle Scholar
  45. Valderrama MJ, Prado B, del Moral A, Ríos R, Ramos-Cormenzana A, Campos V (1991) Numerical taxonomy of moderately halophilic gram-positive cocci isolated from the Salar de Atacama (Chile). Microbiologia 7:35–41PubMedGoogle Scholar
  46. Williams W (1996) The largest, highest and lowest lakes of the world: saline lakes. Verh Int Verein Limnol 26:61–79Google Scholar
  47. Wu Q, Zwart G, Schauer M, Kamst-van Agterveld M, Hahn M (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485PubMedCrossRefGoogle Scholar
  48. Yentsch C, Menzel D (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res 10:221–231Google Scholar
  49. Zúñiga L, Campos V, Pinochet H, Prado B (1991) A limnological reconnaissance of Lake Tebenquiche, Salar de Atacama, Chile. Hydrobiologia 210:1–2Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Cecilia Demergasso
    • 1
    • 2
  • Lorena Escudero
    • 2
    • 5
  • Emilio O. Casamayor
    • 3
    Email author
  • Guillermo Chong
    • 2
    • 4
  • Vanessa Balagué
    • 5
  • Carlos Pedrós-Alió
    • 5
  1. 1.Centro de BiotecnologíaUniversidad Católica del NorteAntofagastaChile
  2. 2.Centro de Investigación Científica y Tecnológica para la MineríaRegión de AntofagastaChile
  3. 3.Unitat de LimnologiaCentre d’Estudis Avançats de Blanes (CSIC)BlanesSpain
  4. 4.Departamento de Ciencias GeológicasUniversidad Católica del NorteAntofagastaChile
  5. 5.Departament de Biologia Marina i Oceanografia, Institut de Ciències del MarCSICBarcelonaSpain

Personalised recommendations