, Volume 12, Issue 3, pp 391–404 | Cite as

Influence of salts and pH on growth and activity of a novel facultatively alkaliphilic, extremely salt-tolerant, obligately chemolithoautotrophic sufur-oxidizing Gammaproteobacterium Thioalkalibacter halophilus gen. nov., sp. nov. from South-Western Siberian soda lakes

  • Horia L. BanciuEmail author
  • Dimitry Y. Sorokin
  • Tatyana P. Tourova
  • Erwin A. Galinski
  • Maria S. Muntyan
  • J. Gijs Kuenen
  • Gerard Muyzer
Original Paper


A chemolithoautotrophic sulfur-oxidizing bacterium (SOB) strain ALCO 1 capable of growing at both near-neutral and extremely alkaline pH was isolated from hypersaline soda lakes in S-W Siberia (Altai, Russia). Strain ALCO 1 represents a novel separate branch within the halothiobacilli in the Gammaproteobacteria, which, so far, contained only neutro-halophilic SOB. On the basis of its unique phenotypic properties and distant phylogeny, strain ALCO 1 is proposed as a new genus and species Thioalkalibacter halophilus gen. nov. sp. nov. ALCO 1 was able to grow within a broad range of salinity (0.5–3.5 M of total sodium) with an optimum at around 1 M Na+, and pH (7.2–10.2, pHopt at around 8.5). Na+ was required for sulfur-dependent respiration in ALCO 1. The neutral (NaCl)-grown chemostat culture had a much lower maximum growth rate (μmax), respiratory activity and total cytochrome c content than its alkaline-grown counterpart. The specific concentration of osmolytes (ectoine and glycine-betaine) produced at neutral pH and 3 M NaCl was roughly two times higher than at pH 10 in soda. Altogether, strain ALCO 1 represents an interesting chemolithoautotrophic model organism for comparative investigations of bacterial adaptations to high salinity and pH.


Haloalkaliphilic Halothiobacillus Soda lakes Sulfur-oxidizing bacteria Thioalkalibacter halophilus 



This work was supported by the NWO-RFBR (grant 47.011.2004.010), RFBR (grants 07-04-00153 and 05-04-49504), by the Program of the Russian Academy of Sciences “Molecular and Cell Biology” and by the Program for Excellence in Research of Romanian Ministry for Research and Education (CEEX-ET, Nr. 5913/18.09.2006).


  1. Ambler RP, Meyer TE, Trüdinger PA, Kamen MD (1985) The amino acid sequence of the cytochrome c-554(547) from the chemolithotrophic bacterium Thiobacillus neapolitanus. Biochem J 227:1009–1013PubMedGoogle Scholar
  2. Banciu HL (2004) Physiology of alkaliphilic sulfur-oxidizing bacteria from soda lakes. Optima BV, RotterdamGoogle Scholar
  3. Banciu H, Kleerebezem R, Muyzer G, Kuenen JG, Sorokin DY (2004a) Application of haloalkaliphilic sulfur-oxidizing bacteria for the removal of H2S from gas streams. In: Verstraete W (ed) Proceedings of European Symposium on Environmental Biotechnology, ESEB 2004, Oostende, Belgium, 25–28 April, pp 345–348Google Scholar
  4. Banciu H, Sorokin DY, Kleerebezem R, Muyzer G, Galinski EA, Kuenen JG (2004b) Growth kinetics of haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio versutus strain ALJ 15 in continuous culture. Extremophiles 8:185–192PubMedCrossRefGoogle Scholar
  5. Banciu H, Sorokin DY, Muyzer G, Kleerebezem R, Galinski EA, Kuenen JG (2004c) Thioalkalivibrio halophilus sp. nov, a novel obligately chemolithoautotrophic facultatively alkaliphilic and extremely salt-tolerant sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8:325–334PubMedGoogle Scholar
  6. Banciu H, Sorokin DY, Rijpstra WI, Sinninghe Damste JS, Galinski EA, Takaichi S, Muyzer G, Kuenen JG (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187PubMedCrossRefGoogle Scholar
  7. Bosch PLF, Beusekom OC, Buisman CJN, Janssen AJH (2007) Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 97:1053–1063PubMedCrossRefGoogle Scholar
  8. Buisman CJN, Sorokin DY, Kuenen JG, Janssen A.JH, Robertson LA (2000) Process for the purification of gases containing hydrogen sulfide. US Patent 6,156,205, 5 December 2000)Google Scholar
  9. De Vries W, Kapteijn W M, Van der Beek E G, Stouthamer A H, (1970) Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures . J Gen Microbiol 63:333–345PubMedGoogle Scholar
  10. Foti M, Ma S, Sorokin DY, Rademaker JL, Kuenen JG, Muyzer G (2006) Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiol Ecol 56:95–101PubMedCrossRefGoogle Scholar
  11. Foti M, Sorokin DY, Lomans B, Mussman M, Zakharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100PubMedCrossRefGoogle Scholar
  12. Galinski EA (1995) Osmoadaptation in bacteria. Adv Microb Physiol 37:272–328PubMedGoogle Scholar
  13. Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 153:607–613CrossRefGoogle Scholar
  14. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Appl Microbiol Biotechnol 5:123–127CrossRefGoogle Scholar
  15. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84PubMedCrossRefGoogle Scholar
  16. Janssen AJH, Ruitenberg R, Buisman CJN (2001) Industrial applications of new sulphur biotechnology. Water Sci Technol 44:85–90PubMedGoogle Scholar
  17. Kelly DP, Wood AP (1994) Enzymes involved in microbiological oxidation of thiosulfate and polythionates. Meth Enzymol 243:501–520CrossRefGoogle Scholar
  18. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516PubMedGoogle Scholar
  19. Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectrophotometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41:898–901CrossRefGoogle Scholar
  20. Kuenen JG, Robertson LA, Tuovinen OH (1992) The genera Thiobacillus, Thiomicrospira and Thiosphaera. In: Balows A, Trüper HG, Dworkin MD, Hadere W, Schleifer KH (eds) The Prokaryotes, vol 3, 2nd edn. Springer, New York, pp 2638–2657Google Scholar
  21. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  22. Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208–214CrossRefGoogle Scholar
  23. Oren A (2002) Halophilic microorganisms and their environments. Kluwer, DordrechtGoogle Scholar
  24. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55:245–256Google Scholar
  25. Robertson LA, Kuenen JG (1992a) The colorless sulfur bacteria. In: Balows A, Trüper HG, Dworkin MD, Hadere W, Schleifer KH (eds) The Prokaryotes, vol 1, 2nd edn,. Springer, New York, pp 385–413Google Scholar
  26. Robertson LA, Kuenen JG (1992b) The use of natural bacterial populations for the treatment of sulfurcontaining wastewater. Biodegradation 3:239–254CrossRefGoogle Scholar
  27. Schäfer H, Muyzer G (2001) Denaturing gradient gel electrophoresis in marine microbial ecology. In: Paul JH (ed) Methods in Microbiology, vol 30. Academic Press, New York, pp 426–468Google Scholar
  28. Sone N, Fujiwara Y (1991) Effect of aeration during growth of Bacillus stearothermophilus on proton pumping activity and change of terminal oxidases. J Biochem 110:1016–1021PubMedGoogle Scholar
  29. Sörbo B (1957) A colorimetric determination of thiosulfate. Biochim Biophys Acta 23:412–416PubMedCrossRefGoogle Scholar
  30. Sorokin DY, Kuenen JG (2005) Haloalkaliphilic sulphur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702PubMedCrossRefGoogle Scholar
  31. Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen GJ (2001) Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580PubMedGoogle Scholar
  32. Sorokin DY, Banciu H, van Loosdrecht MCM, Kuenen JG (2003) Growth physiology and competitive interaction of obligately chemolithoautotrophic, haloalkaliphilic, sulfuroxidizing bacteria from soda lakes. Extremophiles 7:195–203PubMedGoogle Scholar
  33. Sorokin DY, Banciu H, Robertson LA, Kuenen JG (2006a) Haloalkaliphilic sulfur-oxidizing bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, vol 2, 3rd edn. Springer, New York, pp 969–984Google Scholar
  34. Sorokin DY, Tourova TP, Lysenko AM, Muyzer G (2006b) Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152(Pt 10):3013–3023PubMedCrossRefGoogle Scholar
  35. Sorokin DY, Tourova TP, Bracker G, Muyzer G (2007) Thiohalomonas denitrificans gen. nov. sp. nov, and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic moderately halophilic thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589PubMedCrossRefGoogle Scholar
  36. Trüper HG, Schlegel HG (1964) Sulfur metabolism in Thiorhodaceae. 1. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225-238CrossRefGoogle Scholar
  37. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570PubMedGoogle Scholar
  38. Wood AP, Kelly DP (1991) Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280CrossRefGoogle Scholar
  39. Yumoto I (1992) Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353Google Scholar
  40. Zhilina TN, Zavarzin GA., Rainey FA., Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Horia L. Banciu
    • 1
    Email author
  • Dimitry Y. Sorokin
    • 2
    • 3
  • Tatyana P. Tourova
    • 2
  • Erwin A. Galinski
    • 4
  • Maria S. Muntyan
    • 5
  • J. Gijs Kuenen
    • 3
  • Gerard Muyzer
    • 3
  1. 1.Faculty of Biology and GeologyBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.S. N. Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  3. 3.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
  4. 4.Institute of Microbiology and BiotechnologyRheinische Friedrich-Wilhelms UniversityBonnGermany
  5. 5.A. N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations