Extremophiles

, Volume 12, Issue 2, pp 197–203 | Cite as

Salinicoccus salitudinis sp. nov., a new moderately halophilic bacterium isolated from a saline soil sample

  • Yi-Guang Chen
  • Xiao-Long Cui
  • Wen-Jun Li
  • Li-Hua Xu
  • Meng-Liang Wen
  • Qian Peng
  • Cheng-Lin Jiang
Original Paper

Abstract

A novel pale-yellow-pigmented, moderately halophilic, facultatively alkaliphilic, non-motile, non-spore-forming, catalase- and oxidase-positive, obligately aerobic Gram-positive coccus, strain YIM-C678T was isolated from a saline soil sample collected from a hypersaline habitat in the Qaidam basin, northwest China. The organism grew at 4–37°C and pH 6.0–11.0, with optimum growth at 25°C and pH 8.0. Strain YIM-C678T grew optimally in the presence of 10–12% (w/v) NaCl and growth was observed in 1–25% (w/v) NaCl. The cell wall murein type was l-Lys-Gly5. Major cellular fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C16:0. Menaquinone 6 (MK-6) was the major respiratory quinone. The DNA G + C content was 46.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM-C678T belonged to the family Staphylococcaceae and was most closely related to the eight described species of the genus Salinicoccus with sequence similarities from 92.2 (S. luteus YIM 70202T) to 97.5% (S. kunmingensis YIM Y15T). The DNA–DNA relatedness between strain YIM-C678T and S. kunmingensis YIM Y15T was 35.4%. Chemotaxonomic data and 16S rRNA gene sequence analysis supported the affiliation of strain YIM-C678T with the genus Salinicoccus. The combination of phylogenetic analysis, phenotypic characteristics, chemotaxonomic differences and DNA–DNA hybridization data supported the view that the bacterium represents a novel species of the genus Salinicoccus, for which the name Salinicoccus salitudinis sp. nov. is proposed, with YIM-C678T (=DSM 17846 = CGMCC 1.6299) as the type strain.

Keywords

Salinicoccus salitudinis sp. nov. Halophilic Hypersaline soil 

References

  1. Aslam Z, Lim JH, Im WT, Yasir M, Chung YR, Lee ST (2007) Salinicoccus jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 57: 633–638PubMedCrossRefGoogle Scholar
  2. Atlas RM (1993) Handbook of microbiological media. Parks LC (Ed.) CRC, Boca RatonGoogle Scholar
  3. Chen HH, Li WJ, Tang SK, Kroppenstedt RM, Stackbrandt E, Xu LH, Jiang CL (2004) Corynebacterium halotolerans sp. nov., isolated from saline soil in the west of China. Int J Syst Evol Microbiol 54:779–782PubMedCrossRefGoogle Scholar
  4. Chen YG, Cui XL, Pukall R, Li HM, Yang YL, Xu LH, Wen ML, Peng Q, Jiang CL (2007) Salinicoccus kunmingensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, southwest China. Int J Syst Evol Microbiol 57 (in press)Google Scholar
  5. Cui XL, Mao PH, Zeng M, Li WJ, Zhang LP, Xu LH, Jiang CL (2001) Streptomonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 51:357–363Google Scholar
  6. Cui XL, Schumann P, Stackebrandt E, Kroppenstedt RM, Pukall R, Xu LH, Rohde M, Jiang CL (2004) Myceligenerans xiligouense gen. nov., sp. nov., a novel hyphae-forming member of the family Promicromonosporaceae. Int J Syst Evol Microbiol 54:1287–1293PubMedCrossRefGoogle Scholar
  7. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376PubMedCrossRefGoogle Scholar
  9. Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstap. Evolution 39:783–791CrossRefGoogle Scholar
  10. Felsenstein J (1993) PHYLIP (phylogenetic inference package), version 3.5. Distributed by the author. Department of Genetics, University of Washington, Seattle, USAGoogle Scholar
  11. Franca L, Rainey FA, Nobre MF, Costa MS (2006) Salinicoccus salsiraiae sp. nov.: a new moderately halophilic gram-positive bacterium isolated from salted skate. Extremophiles 10:531–536PubMedCrossRefGoogle Scholar
  12. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (1981) Manual of methods for general bacteriology. Am Soc Microbiol, Washington, DCGoogle Scholar
  13. Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127CrossRefGoogle Scholar
  14. Hiraishi A, Ueda Y, Ishihara J, Mori T (1996) Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469CrossRefGoogle Scholar
  15. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM (1985) Preparation of Chromosomal, plasmid and phage DNA. In Genetic manipulation of Streptomyces: a laboratory manual, F. Crowe and Sons, Norwich, pp 79–80Google Scholar
  16. Huß VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  17. Jahnke KD (1992) BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73CrossRefGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  19. Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  20. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245PubMedCrossRefGoogle Scholar
  21. Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein LI (eds) The biology of halophilic bacteria. CRC, Boca Raton, pp 87–103Google Scholar
  22. Li WJ, Zhang YQ, Schumann P, Tian XP, Zhang YQ, Xu LH, Jiang CL (2006) Sinococcus qinghaiensis gen. nov., sp. nov., a novel member of the order Bacillales from a saline soil in China. Int J Syst Evol Microbiol 56:1189–1192PubMedCrossRefGoogle Scholar
  23. Li WJ, Schumann P, Zhang YQ, Xu P, Chen GZ, Xu LH, Stackebrandt E, Jiang CL (2005) Proposal of Yaniaceae fam. nov. and Yania flava sp. nov. and emended description of the genus Yania. Int J Syst Evol Microbiol 55:1933–1938PubMedCrossRefGoogle Scholar
  24. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  25. Marquez MC, Ventosa A, Ruiz-Berraquero F (1990) Marinococcus hispanicus, a new species of moderately halophilic Gram-positive cocci. Int J Syst Bacteriol 40:165–169Google Scholar
  26. Pakdeeto A, Tanasupawat S, Thawai C, Moonmangmee S, Kudo T, Itoh T (2007) Salinicoccus siamensis sp. nov., isolated from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 57:2004–2008PubMedCrossRefGoogle Scholar
  27. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  28. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  29. Schleifer KH (1985) Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156Google Scholar
  30. Schumann P, Cui XL, Stackebrandt E, Kroppenstedt RM, Xu LH, Jiang CL (2004) Jonesia quinghaiensis sp. nov., a new member of the suborder Micrococcineae. Int J Syst Evol Microbiol 54:2181–2184PubMedCrossRefGoogle Scholar
  31. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340Google Scholar
  32. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231PubMedGoogle Scholar
  33. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849Google Scholar
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  35. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A, Kocur M (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968Google Scholar
  36. Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M (1990) Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Syst Appl Microbiol 13:29–33Google Scholar
  37. Ventosa A, Marquez MC, Weiss N, Tindall BJ (1992) Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Syst Appl Microbiol 15:530–534Google Scholar
  38. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, other authors (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  39. Zhang YQ, Yu LY, Liu HY, Zhang YQ, Xu LH, Li WJ (2007) Salinicoccus luteus sp. nov., isolated from a desert soil. Int J Syst Evol Microbiol 57:1901–1905PubMedCrossRefGoogle Scholar
  40. Zhang YQ, Schumann P, Yu LY, Liu HY, Zhang YQ, Xu LH, Stackebrandt E, Jiang CL, Li WJ (2006) Zhihengliuella halotolerans gen. nov., sp. nov., a novel member of the family Micrococcaceae. Int J Syst Evol Microbiol 56:1018–1023Google Scholar
  41. Zhang YQ, Schumann P, Li WJ, Chen GZ, Tian XP, Stackebrandt E, Xu LH, Jiang CL (2005) Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai province, northwest China. Int J Syst Evol Microbiol 55:1867–1870PubMedCrossRefGoogle Scholar
  42. Zhang W, Xue Y, Ma Y, Zhou P, Ventosa A, Grant WD (2002) Salinicoccus alkaliphilus sp. nov., a novel alkaliphile and moderate halophile from Baer Soda lake in inner Mongolia autonomous region, China. Int J Syst Evol Microbiol 52:789–793PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Yi-Guang Chen
    • 1
    • 2
  • Xiao-Long Cui
    • 1
  • Wen-Jun Li
    • 1
  • Li-Hua Xu
    • 1
  • Meng-Liang Wen
    • 1
  • Qian Peng
    • 1
  • Cheng-Lin Jiang
    • 1
  1. 1.Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-resourcesYunnan UniversityKunmingPeople’s Republic of China
  2. 2.College of Bio-resources and Environmental ScienceJishou UniversityJishouPeople’s Republic of China

Personalised recommendations