Extremophiles

, Volume 12, Issue 1, pp 61–68

The α-l-fucosidase from Sulfolobus solfataricus

  • Beatrice Cobucci-Ponzano
  • Fiorella Conte
  • Mosè Rossi
  • Marco Moracci
Review

Abstract

Glycoside hydrolases form hyperthermophilic archaea are interesting model systems for the study of catalysis at high temperatures and, at the moment, their detailed enzymological characterization is the only approach to define their role in vivo. Family 29 of glycoside hydrolases classification groups α-l-fucosidases involved in a variety of biological events in Bacteria and Eukarya. In Archaea the first α-l-fucosidase was identified in Sulfolobus solfataricus as interrupted gene expressed by programmed −1 frameshifting. In this review, we describe the identification of the catalytic residues of the archaeal enzyme, by means of the chemical rescue strategy. The intrinsic stability of the hyperthermophilic enzyme allowed the use of this method, which resulted of general applicability for β and α glycoside hydrolases. In addition, the presence in the active site of the archaeal enzyme of a triad of catalytic residues is a rather uncommon feature among the glycoside hydrolases and suggested that in family 29 slightly different catalytic machineries coexist.

Keywords

Glycoside hydrolase Chemical rescue Nucleophile Acid/base Catalytic triad 

References

  1. Baranov PV, Gurvich OL, Fayet O, Prere MF, Miller WA, Gesteland RF, Atkins JF, Giddings MC (2001) RECODE: a database of frameshifting, bypassing and codon redefinition utilized for gene expression. Nucleic Acids Res 29:264–267PubMedCrossRefGoogle Scholar
  2. Bravman T, Belakhov V, Solomon D, Shoham G, Henrissat B, Baasov T, Shoham Y (2003) Identification of the catalytic residues in family 52 glycoside hydrolase, a beta-xylosidase from Geobacillus stearothermophilus T-6. J Biol Chem 278:26742–26749PubMedCrossRefGoogle Scholar
  3. Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M (2003a) Identification of an archaeal alpha-l-fucosidase encoded by an interrupted gene. Production of a functional enzyme by mutations mimicking programmed −1 frameshifting. J Biol Chem 278:14622–14631PubMedCrossRefGoogle Scholar
  4. Cobucci-Ponzano B, Trincone A, Giordano A, Rossi M, Moracci M (2003b) Identification of the catalytic nucleophile of the family 29 alpha-l-fucosidase from Sulfolobus solfataricus via chemical rescue of an inactive mutant. Biochemistry 42:9525–9531PubMedCrossRefGoogle Scholar
  5. Cobucci-Ponzano B, Mazzone M, Rossi M, Moracci M (2005) Probing the catalytically essential residues of the alpha-l-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochemistry 44:6331–6342PubMedCrossRefGoogle Scholar
  6. Cobucci-Ponzano B, Conte F, Benelli D, Londei P, Flagiello A, Monti M, Pucci P, Rossi M, Moracci M (2006) The gene of an archaeal alpha-l-fucosidase is expressed by translational frameshifting. Nucleic Acids Res 34:4258–4268PubMedCrossRefGoogle Scholar
  7. Debeche T, Bliard C, Debeire P, O’Donohue MJ (2002) Probing the catalytically essential residues of the alpha-l-arabinofuranosidase from Thermobacillus xylanilyticus. Protein Eng 1:21–28CrossRefGoogle Scholar
  8. de La Torre F, Sampedro J, Zarra I, Revilla G (2002) AtFXG1, an Arabidopsis gene encoding alpha-l-fucosidase active against fucosylated xyloglucan oligosaccharides. Plant Physiol 128:247–255PubMedCrossRefGoogle Scholar
  9. Farabaugh PJ (1996) Programmed translational frameshifting. Microbiol Rev 60:103–134PubMedGoogle Scholar
  10. Farkas E, Thiem J, Ajisaka K (2000) Enzymatic synthesis of fucose-containing disaccharides employing the partially purified alpha-l-fucosidase from Penicillium multicolor. Carbohydr Res 328:293–299PubMedCrossRefGoogle Scholar
  11. Fischer L, Bromann R, Kengen SWM, de Vos WM, Wagner F (1996) Catalytical potency of beta-glucosidase from the extremophile Pyrococcus furiosus in glucoconjugate. Biotechnology 14:88–91PubMedCrossRefGoogle Scholar
  12. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316PubMedGoogle Scholar
  13. Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293:781–788PubMedGoogle Scholar
  14. Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644PubMedCrossRefGoogle Scholar
  15. Koshland DE (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev Camb Philos Soc 28:416–436CrossRefGoogle Scholar
  16. Li YK, Chir J, Tanaka S, Chen FY (2002) Identification of the general acid/base catalyst of a family 3 beta-glucosidase from Flvobacterium meningosepticum. Biochemistry 41:2751–2759PubMedCrossRefGoogle Scholar
  17. Listinsky JJ, Siegal GP, Listinsky CM (1998) Alpha-l-fucose: a potentially critical molecule in pathologic processes including neoplasia. Am J Clin Pathol 110:425–440PubMedGoogle Scholar
  18. Lower BH, Kennelly PJ (2002) The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol 184:2614–2619PubMedCrossRefGoogle Scholar
  19. Ly HD, Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68:487–522PubMedCrossRefGoogle Scholar
  20. MacLeod AM, Tull D, Rupitz K, Warren RA, Withers SG (1996) Mechanistic consequences of mutation of active site carboxylates in a retaining beta-1,4-glycanase from Cellulomonas fimi. Biochemistry 35:13165–13172PubMedCrossRefGoogle Scholar
  21. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892PubMedCrossRefGoogle Scholar
  22. McCarter JD, Withers SG (1996) Unequivocal identification of Asp-214 as the catalytic nucleophile of Saccharomyces cerevisiae alpha-glucosidase using 5-fluoro glycosyl fluorides. J Biol Chem 271:6889–6894PubMedCrossRefGoogle Scholar
  23. Michalski JC, Klein A (1999) Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Biochim Biophys Acta 1455:69–84PubMedGoogle Scholar
  24. Mori E, Hedrick JL, Wardrip NJ, Mori T, Takasaki S (1998) Occurrence of reducing terminal N-acetylglucosamine 3-sulfate and fucosylated outer chains in acidic N-glycans of porcine zona pellucida glycoproteins. Glycoconj J 15:447–456PubMedCrossRefGoogle Scholar
  25. Murata T, Morimoto S, Zeng X, Watanabe S, Usui T (1999) Enzymatic synthesis of alpha-l-fucosyl-N-acetyllactosamines and 3′-O-alpha-l-fucosyllactose utilizing alpha-l-fucosidases. Carbohydr Res 320:192–199PubMedCrossRefGoogle Scholar
  26. Noda K, Miyoshi E, Uozumi N, Gao CX, Suzuki K, Hayashi N, Hori M, Taniguchi N (1998) High expression of alpha-1-6 fucosyltransferase during rat hepatocarcinogenesis. Int J Cancer 75:444–450PubMedCrossRefGoogle Scholar
  27. Paal K, Ito M, Withers SG (2004) Paenibacillus sp. TS12 glucosylceramidase Kinetic studies of a novel sub-family of family 3 glycosidases and identification of the catalytic residues. Biochem J 378:141–149PubMedCrossRefGoogle Scholar
  28. Perugino G, Trincone A, Rossi M, Moracci M (2004) Oligosaccharide synthesis by glycosynthases. Trends Biotechnol 1:31–37CrossRefGoogle Scholar
  29. Rapoport E, Pendu JL (1999) Glycosylation alterations of cells in late phase apoptosis from colon carcinomas. Glycobiology 9:1337–1345PubMedCrossRefGoogle Scholar
  30. Rosano C, Zuccotti S, Cobucci-Ponzano B, Mazzone M, Rossi M, Moracci M, Petoukhov MV, Svergun DI, Bolognesi M (2004) Structural characterization of the nonameric assembly of an Archaeal alpha-l-fucosidase by synchrotron small angle X-ray scattering. Biochem Biophys Res Commun 320:176–182PubMedCrossRefGoogle Scholar
  31. Russell L, Waring P, Beaver JP (1998) Increased cell surface exposure of fucose residues is a late event in apoptosis. Biochem Biophys Res Commun 250:449–453PubMedCrossRefGoogle Scholar
  32. Rydberg EH, Li C, Maurus R, Overall CM, Brayer GD, Withers SG (2002) Mechanistic analyses of catalysis in human pancreatic alpha-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41:4492–4502PubMedCrossRefGoogle Scholar
  33. Sears P, Wong CH (1996) Intervention of carbohydrate recognition by proteins and nucleic acids. Proc Natl Acad Sci USA 93:12086–12093PubMedCrossRefGoogle Scholar
  34. Shallom D, Belakhov V, Solomon D, Gilead-Gropper S, Baasov T, Shoham G, Shoham Y (2002) The identification of the acid-base catalyst of alpha-arabinofuranosidase from Geobacillus stearothermophilus T-6, a family 51 glycoside hydrolase. FEBS Lett 514:163–167PubMedCrossRefGoogle Scholar
  35. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der Oost J (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedCrossRefGoogle Scholar
  36. Sinnot ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202CrossRefGoogle Scholar
  37. Staudacher E, Altmann F, Wilson IB, Marz L (1999) Fucose in N-glycans: from plant to man. Biochim Biophys Acta 1473:216–236PubMedGoogle Scholar
  38. Sulzenbacher G, Bignon C, Nishimura T, Tarling CA, Withers SG, Henrissat B, Bourne Y (2004) Crystal structure of Thermotoga maritima α-l-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis. J Biol Chem 279:13119–13128PubMedCrossRefGoogle Scholar
  39. Tarling CA, He S, Sulzenbacher G, Bignon C, Bourne Y, Henrissat B, Withers SG (2003) Identification of the catalytic nucleophile of the family 29 α-l-fucosidase from Thermotoga maritima through trapping of a covalent glycosylenzyme intermediate and mutagenesis. J Biol Chem 278:47394–47399PubMedCrossRefGoogle Scholar
  40. Tull D, Burgoyne DL, Chow DT, Withers SG, Aebersold R (1996) A mass spectrometry-based approach for probing enzyme active sites: Identification of Glu 127 in Cellulomonas fimi exoglycanase as the residue modified by N-bromoacetyl cellobiosylamine. Anal Biochem 234:119–125PubMedCrossRefGoogle Scholar
  41. Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausin C, Querol E, Planas A, Perez-Pons JA (2001) Mechanism of the family 1 beta-glucosidase from Streptomyces sp: catalytic residues and kinetic studies. Biochemistry 40:5975–5982PubMedCrossRefGoogle Scholar
  42. Vanhooren PT, Vandamme EJ (1999) l-fucose: occurrence, physiological role, chemical, enzymatic and microbial synthesis. J Chem Technol Biotechnol 74:479–497CrossRefGoogle Scholar
  43. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 2:97–130CrossRefGoogle Scholar
  44. Viladot JL, de Ramon E, Durany O, Planas A (1998) Probing the mechanism of Bacillus 1,3-1,4-beta-d-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry 37:11332–11342PubMedCrossRefGoogle Scholar
  45. Vocadlo DJ, Mayer C, He S, Withers SG (2000) Mechanism of action and identification of Asp242 as the catalytic nucleophile of Vibrio furnisii N-acetyl-beta-d-glucosaminidase using 2-acetamido-2-deoxy-5-fluoro-alpha-l-idopyranosyl fluoride. Biochemistry 1:117–126CrossRefGoogle Scholar
  46. Vocadlo DJ, Davies GJ, Laine R, Withers SG (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412:835–838PubMedCrossRefGoogle Scholar
  47. Vocadlo DJ, Wicki J, Rupitz K, Withers SG (2002) A case for reverse protonation: identification of Glu160 as an acid/base catalyst in Thermoanaerobacterium saccharolyticum beta-xylosidase and detailed kinetic analysis of a site-directed mutant. Biochemistry 41:9736–9746PubMedCrossRefGoogle Scholar
  48. Wiese TJ, Dunlap JA, Yorek MA (1997) Effect of l-fucose and d-glucose concentration on l-fucoprotein metabolism in human Hep G2 cells and changes in fucosyltransferase and alpha-l-fucosidase activity in liver of diabetic rats. Biochim Biophys Acta 1335:61–72PubMedGoogle Scholar
  49. Xiang J, Bernstein IA (1992) Differentiative changes in fucosyltransferase activity in newborn rat epidermal cells. Biochem Biophys Res Commun 189:27–32PubMedCrossRefGoogle Scholar
  50. Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18PubMedCrossRefGoogle Scholar
  51. Zechel DL, Reid SP, Stoll D, Nashiru O, Warren RA, Withers SG (2003) Mechanism, mutagenesis, and chemical rescue of a beta-mannosidase from Cellulomonas fimi. Biochemistry 42:7195–7204PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Beatrice Cobucci-Ponzano
    • 1
  • Fiorella Conte
    • 1
  • Mosè Rossi
    • 1
    • 2
  • Marco Moracci
    • 1
  1. 1.Institute of Protein BiochemistryConsiglio Nazionale delle RicercheNaplesItaly
  2. 2.Dipartimento di Biologia Strutturale e FunzionaleUniversità di Napoli “Federico II”NaplesItaly

Personalised recommendations