, Volume 11, Issue 6, pp 789–796 | Cite as

Halomonas sinaiensis sp. nov., a novel halophilic bacterium isolated from a salt lake inside Ras Muhammad Park, Egypt

  • Ida Romano
  • Licia Lama
  • Pierangelo Orlando
  • Barbara Nicolaus
  • Assunta Giordano
  • Agata GambacortaEmail author
Original Paper


An alkalitolerant and halotolerant bacterium, designated strain Sharm was isolated from a salt lake inside Ras Muhammad. The morphological, physiological and genetic characteristics were compared with those of related species of the genus Halomonas. The isolate grew optimally at pH 7.0, 5–15% NaCl at 35°C. The cells were Gram-negative rods, facultative anaerobes. They accumulated glycine-betaine, as a major osmolyte, and ectoine and glutamate as minor components. The strain SharmT biosynthetised α-glucosidase. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and a novel phosphoglycolipid as major components. Ubiquinone with nine repetitive unities (Q9) was the only quinone found and, nC16:0 and C19:0 with cyclopropane were the main cellular fatty acids, accounting for 87.3% of total fatty acids. The G + C content of the genomic DNA was 64.7 mol %. The 16S rRNA sequence analysis indicated that strain Sharm was a member of the genus Halomonas. The closest relatives of the strain Sharm were Halomonas elongata and Halomonas eurihalina. However, DNA–DNA hybridisation results clearly indicated that strain Sham was a distinct species of Halomonas. On the basis of the evidence, we propose to assign strain Sharm as a new species of the genus Halomonas, H. sinaiensis sp. nov, with strain SharmT as the type strain (DSM 18067T; ATCC BAA-1308T).


Egypt Extremophiles Halomonas Halophiles Lipids 



The paper was supported by the framework PNRA. The authors thank Valeria Calandrelli, Eduardo Pagnotta for technical assistance, Vincenzo Mirra, Salvatore Zambardino and Dominique Merk for NMR-ICB service, Ottavio De Luca for GC-MS analyses and Emilio P. Castelluccio for computer system maintenance, and Dr. F.M. Vella for some experiments.


  1. Asao M, Jung DO, Achenbach LA, Madigan MT (2006) Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt. Extremophiles 10:403–410PubMedCrossRefGoogle Scholar
  2. Arahal DR and Ventosa A (2005) The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt (eds) The prokaryotes. An evolving electronic resource for the microbial community. Springer-Verlag, New York.
  3. Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002a) Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the specie Halomonas marina. Syst Appl Microbiol 25:207–211PubMedCrossRefGoogle Scholar
  4. Arahal DR, Ludwig W, Schleifer KH, Ventosa A (2002b) Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249PubMedGoogle Scholar
  5. Asker D, Ohta H (2002) Haloferax alexandrius sp. nov., an extremely halophilic canthaxanthin-producing archaeon from a solar saltern in Alexandria (Egypt). Int J Syst Evol Microbiol 52:729–738PubMedCrossRefGoogle Scholar
  6. Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ (1996) Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19:158–167Google Scholar
  7. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
  8. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  9. Dussault HP (1955) An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485PubMedGoogle Scholar
  10. Ezaki T, Yasushiro H, Eiko Y (1989) Fluorimetric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229Google Scholar
  11. Felsenstein J (2004) PHYLIP (Phylogeny Inference Package), version 3.6. Distributed by the author. Department of genome Sciences, University of Washington, Seattle, at
  12. Franzmann PD, Tindall BJ (1990) A chemotaxonomic study of members of the family Halomonadaceae. Syst Appl Microbiol 13:142–147Google Scholar
  13. Friedman GM (1985) Gulf of Elat (Aqaba) geological setting and sedimentological framework. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems-the Gavish Sabka. Springer-Verlag, Berlin, pp 39–71Google Scholar
  14. Garcìa MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a novel moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728PubMedCrossRefGoogle Scholar
  15. Garrity GM, Bell JA, Lilburin T (2005) Halomonadaceae, In: Brenner LDJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2, Springer, USA, pp 300–315Google Scholar
  16. Grant WB (2004) Introductory chapter: half a lifetime in Soda Lakes. In: Ventosa A (eds) Halophilic microorganisms. Springer-Verlag, Heidelberg, pp 17–22Google Scholar
  17. Gordon RHWC, Pang CHN (1973) The genus Bacillus. USA Department of Agriculture, Washington (Agricult Monogr 427)Google Scholar
  18. Goris J, Suzuki K, DeVos P, Nakase T, Kersters K (1998) Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153CrossRefGoogle Scholar
  19. Halebian S, Harris B, Finegold SM, Rolfe R (1981) Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 13:444–448PubMedGoogle Scholar
  20. Hezayen FF, Rehm BHA, Tindall BJ, Steinbuchel A (2001) Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). Int J Syst Evol Microbiol 51:1133–1142PubMedGoogle Scholar
  21. Hezayen FF, Rehm BHA, Tindall BJ, Steinbuchel A (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280PubMedCrossRefGoogle Scholar
  22. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192Google Scholar
  23. Jahnke KD (1994) A modified method of quantitative colorimetric DNA-DNA hybridization on membrane filters for bacterial identification. J Microbiol Meth 20:273–288CrossRefGoogle Scholar
  24. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  25. Krumbein WE, Gorbushina AA, Holtkamp-Tacken E (2004) Evaporites, and life-Part 2. Astrobiology 4:450–459PubMedCrossRefGoogle Scholar
  26. Lim J-M, Yoon J-H, Lee J-C, Jeon CO, Park D-J, Sung CK, Kim C-J (2005) Halomonas koreensis sp. nov., a novel moderately halophilic bacterium isolated form a solar saltern in Korea. Int J Syst Evol Microbiol 55:787–791CrossRefGoogle Scholar
  27. Martínez-Cánovas MJ, Quesada E, Llamas I, Béjar V (2004) Halomonas ventosae sp. nov., a moderately halophilic denitrifying exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737PubMedCrossRefGoogle Scholar
  28. Martínez-Checa F, Béjar V, Martínez-Cánovas MJ, Llamas I, Quesada E (2005) Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing from Cabo de Gata (Almeria, south-east Spain). Int J Syst Evol Microbiol 55:2007–2011PubMedCrossRefGoogle Scholar
  29. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V (2002) A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375PubMedCrossRefGoogle Scholar
  30. Mellado E, Ventosa A (2003) Biotechnological potential of moderately and extremely halophilic microorganisms. In: Barredo JL (ed) Microorganisms for health care, food and enzyme production. Research Signpost, Kerala, pp 233–256Google Scholar
  31. Mesbah M, Whitman WB (1989) Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage by high-performance liquid chromatography for determination of mole percentage guanine+cytosine of DNA. J Chromatogr 479:297–306PubMedCrossRefGoogle Scholar
  32. Motta A, Romano I, Gambacorta A (2004) Rapid and sensitive NMR method for osmolyte determination. J Microbiol Methods 58:289–294PubMedCrossRefGoogle Scholar
  33. Nicolaus B, Manca MC, Lama L, Esposito E, Gambacorta A (2001) Lipid modulation by enviromental stresses in two models of extremophiles isolated from Antartica. Polar Biol 24:1–8CrossRefGoogle Scholar
  34. Nieto JJ, Vargas C (2002) Synthesis of osmoprotectants by moderately halophilic bacteria: genetic and applied aspects. In: Pandalai SG (eds) Recent research developments in microbiology. Research Signpost, Kerala, pp 403–418Google Scholar
  35. Oren A (2002) Halophilic microorganisms and their environments. Kluwer, LondonGoogle Scholar
  36. Oren A, Galinski EA (1994) Hydrolysis of N’-benzoyl-arginine-p-nitroanilide stereoisomers as a phenotypic test: a study of Gram-positive halotolerant bacteria. Syst Appl Microbiol 17:7–10Google Scholar
  37. Oren A, Ventosa A (2005) International committee on systematics of prokaryotes subcommittee on the taxonomy of Halobacteriaceae. Minutes of the meeting, 25 July 2005, San Francisco, CA, USA. Int J Syst Evol Microbiol 55:2637–2638CrossRefGoogle Scholar
  38. Oren A, Ventosa A, Gutiérrez MC, Kamekura M (1999) Haloarcula quadrata sp. nov., a square, motile archaeon, isolated from a brine pool in Sinai (Egypt). Int J Syst Evol Microbiol 48:1149–1155CrossRefGoogle Scholar
  39. Poli A, Esposito E, Orlando P, Lama L, Giordano A, de Apollonia F, Nicolaus B, Gambacorta A (2007) Halomonas alkantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30:31–38PubMedCrossRefGoogle Scholar
  40. Purser BH (1973) The Persian gulf. Springer, BerlinGoogle Scholar
  41. Purser BH (1985) Coastal evaporite systems. In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems-the Gavish Sabka. Springer-Verlag, Berlin, pp 72–102Google Scholar
  42. Quesada E, Valderrama MJ, Béjar V, Ventosa A, Gutiérrez MC, Ruiz-Berraquero F, Ramos-Cormenzana A (1990) Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic non-motile gram-negative rod. Int J Syst Bacteriol 40:261–267Google Scholar
  43. Romano I, Nicolaus B, Lama L, Manca MC, Gambacorta A (1996) Characterization of a haloalkalophilic strictly aerobic bacterium, isolated from Pantelleria island. Syst Appl Microbiol 19:326–333Google Scholar
  44. Romano I , Nicolaus B, Lama L, Trabasso D, Caracciolo G, Gambacorta A (2001) Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol 24:342–352PubMedCrossRefGoogle Scholar
  45. Romano I, Giordano A, Lama L, Nicolaus B, Gambacorta A (2005) Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol 28:610–618PubMedCrossRefGoogle Scholar
  46. Saitou N, Nei M (1987)The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  47. Sorokin D YU, Tourova TP, Kolganova TV, Sjollema KA, Kuenen JG (2002) Thioalkalispira microaerophila gen. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182PubMedCrossRefGoogle Scholar
  48. Sykes J (1971) Methods in microbiology. In: Norris JR, Ribbons DW (eds) Centrifugal techniques for the isolation and characterization of sub-cellular components from bacteria. Academic Press, London, pp 189–193Google Scholar
  49. Vreeland RH (2005) Genus Halomonas. In: Garrity G, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology vol 2. The Proteobacteria. Springer, New York pp 316–319Google Scholar
  50. Vreeland RH, Litchfield EL, Martin E, Elliot E (1980) Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:488–495CrossRefGoogle Scholar
  51. Yagi H, Maruyama A (1998) Novel diglycosyldiacylglycerol from the gram-negative bacterium Deleya marina. Biochim Biophys Acta 1393:161–165PubMedGoogle Scholar
  52. Yagi Y, Maruyama A (2001) New glucosyl phosphatidyl glycerol derivatives from Deleya marina. Jpn. Kokai Tokyo KohoGoogle Scholar
  53. Zähringer U, Wagner F, Rietschel ETh, Ben-Manachem G, Deutsch J, Rottem S (1997) Primary structure of a new phosphocholine-containing glycoglycerolipid of Mycoplasma fermentans. J Biol Chem 42:26262–26270CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ida Romano
    • 1
  • Licia Lama
    • 1
  • Pierangelo Orlando
    • 2
  • Barbara Nicolaus
    • 1
  • Assunta Giordano
    • 1
  • Agata Gambacorta
    • 1
    Email author
  1. 1.Istituto di Chimica Biomolecolare, Comprensorio ex OlivettiNapoliItaly
  2. 2.Istituto di Biochimica delle Proteine, CNRNapoliItaly

Personalised recommendations