, Volume 12, Issue 1, pp 39–50 | Cite as

The impact of extremophiles on structural genomics (and vice versa)

  • Francis E. Jenney Jr
  • Michael W. W. AdamsEmail author


The advent of the complete genome sequences of various organisms in the mid-1990s raised the issue of how one could determine the function of hypothetical proteins. While insight might be obtained from a 3D structure, the chances of being able to predict such a structure is limited for the deduced amino acid sequence of any uncharacterized gene. A template for modeling is required, but there was only a low probability of finding a protein closely-related in sequence with an available structure. Thus, in the late 1990s, an international effort known as structural genomics (SG) was initiated, its primary goal to “fill sequence-structure space” by determining the 3D structures of representatives of all known protein families. This was to be achieved mainly by X-ray crystallography and it was estimated that at least 5,000 new structures would be required. While the proteins (genes) for SG have subsequently been derived from hundreds of different organisms, extremophiles and particularly thermophiles have been specifically targeted due to the increased stability and ease of handling of their proteins, relative to those from mesophiles. This review summarizes the significant impact that extremophiles and proteins derived from them have had on SG projects worldwide. To what extent SG has influenced the field of extremophile research is also discussed.


Structural genomics Open reading frame Extremophiles Thermophiles Hyperthermophiles X-ray crystallography NMR spectroscopy 



Open reading frame


Structural genomics



Work reported here from the authors’ laboratory was supported in part by grants from the National Science Foundation, the Department of Energy, the National Institutes of Health, the University of Georgia and the Georgia Research Alliance.


  1. Abergel C, Coutard B, Byrne D, Chenivesse S, Claude JB, Deregnaucourt C, Fricaux T, Gianesini-Boutreux C, Jeudy S, Lebrun R, Maza C, Notredame C, Poirot O, Suhre K, Varagnol M, Claverie JM (2003) Structural genomics of highly conserved microbial genes of unknown function in search of new antibacterial targets. J Struct Funct Genomics 4:141–157PubMedCrossRefGoogle Scholar
  2. Acton TB, Gunsalus KC, Xiao R, Ma LC, Aramini J, Baran MC, Chiang YW, Climent T, Cooper B, Denissova NG, Douglas SM, Everett JK, Ho CK, Macapagal D, Rajan PK, Shastry R, Shih LY, Swapna GV, Wilson M, Wu M, Gerstein M, Inouye M, Hunt JF, Montelione GT (2005) Robotic cloning and protein production platform of the northeast structural genomics consortium. Methods Enzymol 394:210–243PubMedCrossRefGoogle Scholar
  3. Adams MW, Dailey HA, DeLucas LJ, Luo M, Prestegard JH, Rose JP, Wang BC (2003) The southeast collaboratory for structural genomics: a high-throughput gene to structure factory. Acc Chem Res 36:191–198PubMedCrossRefGoogle Scholar
  4. Almeida MS, Herrmann T, Peti W, Wilson IA, Wuthrich K (2005) NMR structure of the conserved hypothetical protein TM0487 from Thermotoga maritima: implications for 216 homologous DUF59 proteins. Protein Sci 14:2880–2886PubMedCrossRefGoogle Scholar
  5. Alzari PM, Berglund H, Berrow NS, Blagova E, Busso D, Cambillau C, Campanacci V, Christodoulou E, Eiler S, Fogg MJ, Folkers G, Geerlof A, Hart D, Haouz A, Herman MD, Macieira S, Nordlund P, Perrakis A, Quevillon-Cheruel S, Tarandeau F, van Tilbeurgh H, Unger T, Luna-Vargas MP, Velarde M, Willmanns M, Owens RJ (2006) Implementation of semi-automated cloning and prokaryotic expression screening: the impact of SPINE. Acta Crystallogr D Biol Crystallogr 62:1103–1113PubMedCrossRefGoogle Scholar
  6. Arzt S, Beteva A, Cipriani F, Delageniere S, Felisaz F, Forstner G, Gordon E, Launer L, Lavault B, Leonard G, Mairs T, McCarthy A, McCarthy J, McSweeney S, Meyer J, Mitchell E, Monaco S, Nurizzo D, Ravelli R, Rey V, Shepard W, Spruce D, Svensson O, Theveneau P (2005) Automation of macromolecular crystallography beamlines. Prog Biophys Mol Biol 89:124–152PubMedCrossRefGoogle Scholar
  7. Atreya HS, Szyperski T (2005) Rapid NMR data collection. Methods Enzymol 394:78–108PubMedCrossRefGoogle Scholar
  8. Banci L, Bertini I, Cusack S, de Jong RN, Heinemann U, Jones EY, Kozielski F, Maskos K, Messerschmidt A, Owens R, Perrakis A, Poterszman A, Schneider G, Siebold C, Silman I, Sixma T, Stewart-Jones G, Sussman JL, Thierry JC, Moras D (2006) First steps towards effective methods in exploiting high-throughput technologies for the determination of human protein structures of high biomedical value. Acta Crystallogr D Biol Crystallogr 62:1208–1217PubMedCrossRefGoogle Scholar
  9. Berry IM, Dym O, Esnouf RM, Harlos K, Meged R, Perrakis A, Sussman JL, Walter TS, Wilson J, Messerschmidt A (2006) SPINE high-throughput crystallization, crystal imaging and recognition techniques: current state, performance analysis, new technologies and future aspects. Acta Crystallogr D Biol Crystallogr 62:1137–1149PubMedCrossRefGoogle Scholar
  10. Bonanno JB, Almo SC, Bresnick A, Chance MR, Fiser A, Swaminathan S, Jiang J, Studier FW, Shapiro L, Lima CD, Gaasterland TM, Sali A, Bain K, Feil I, Gao X, Lorimer D, Ramos A, Sauder JM, Wasserman SR, Emtage S, D’Amico KL, Burley SK (2005) New York-structural genomix research consortium (NYSGXRC): a large scale center for the protein structure initiative. J Struct Funct Genomics 6:225–232PubMedCrossRefGoogle Scholar
  11. Bravo J, Aloy P (2006) Target selection for complex structural genomics. Curr Opin Struct Biol 16:385–392PubMedCrossRefGoogle Scholar
  12. Brenner SE (2000) Target selection for structural genomics. Nat Struct Biol 7 Suppl:967–969PubMedCrossRefGoogle Scholar
  13. Brenner SE, Chothia C, Hubbard TJ (1997) Population statistics of protein structures: lessons from structural classifications. Curr Opin Struct Biol 7:369–376PubMedCrossRefGoogle Scholar
  14. Brenner SE, Levitt M (2000) Expectations from structural genomics. Protein Sci 9:197–200PubMedCrossRefGoogle Scholar
  15. Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7(Suppl):932–934PubMedCrossRefGoogle Scholar
  16. Canaves JM, Page R, Wilson IA, Stevens RC (2004) Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. J Mol Biol 344:977–991PubMedCrossRefGoogle Scholar
  17. Chakravarty S, Varadarajan R (2002) Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry 41:8152–8161PubMedCrossRefGoogle Scholar
  18. Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351PubMedCrossRefGoogle Scholar
  19. Chandonia JM, Kim SH, Brenner SE (2006) Target selection and deselection at the Berkeley structural genomics center. Proteins 62:356–370PubMedCrossRefGoogle Scholar
  20. Chen S, Yakunin AF, Kuznetsova E, Busso D, Pufan R, Proudfoot M, Kim R, Kim SH (2004) Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii. J Biol Chem 279:31854–31862PubMedCrossRefGoogle Scholar
  21. Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM, Arrowsmith CH (2000) Structural proteomics of an archaeon. Nat Struct Biol 7:903–909PubMedCrossRefGoogle Scholar
  22. Cianci M, Antonyuk S, Bliss N, Bailey MW, Buffey SG, Cheung KC, Clarke JA, Derbyshire GE, Ellis MJ, Enderby MJ, Grant AF, Holbourn MP, Laundy D, Nave C, Ryder R, Stephenson P, Helliwell JR, Hasnain SS (2005) A high-throughput structural biology/proteomics beamline at the SRS on a new multipole wiggler. J Synchrotron Radiat 12:455–466PubMedCrossRefGoogle Scholar
  23. Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, Thierry JC, Van der Oost J, Weissenbach J, Zivanovic Y, Forterre P (2003) An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol 47:1495–1512PubMedCrossRefGoogle Scholar
  24. Collins B, Stevens RC, Page R (2005) Crystallization optimum solubility screening: using crystallization results to identify the optimal buffer for protein crystal formation. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:1035–1038PubMedCrossRefGoogle Scholar
  25. Cornvik T, Dahlroth SL, Magnusdottir A, Flodin S, Engvall B, Lieu V, Ekberg M, Nordlund P (2006) An efficient and generic strategy for producing soluble human proteins and domains in E. coli by screening construct libraries. Proteins 65:266–273PubMedCrossRefGoogle Scholar
  26. Cyranoski D (2006) ‘Big science’ protein project under fire. Nature 443:382PubMedCrossRefGoogle Scholar
  27. DiDonato M, Deacon AM, Klock HE, McMullan D, Lesley SA (2004) A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome. J Struct Funct Genomics 5:133–146PubMedCrossRefGoogle Scholar
  28. Dieckman LJ, Hanly WC, Collart ER (2006) Strategies for high-throughput gene cloning and expression. Genet Eng (N Y) 27:179–190CrossRefGoogle Scholar
  29. Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K (2006) Stably transformed insect cell lines: tools for expression of secreted and membrane-anchored proteins and high-throughput screening platforms for drug and insecticide discovery. Adv Virus Res 68:113–156PubMedCrossRefGoogle Scholar
  30. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17:373–380PubMedCrossRefGoogle Scholar
  31. Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17:353–358PubMedCrossRefGoogle Scholar
  32. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbio 145:56–60CrossRefGoogle Scholar
  33. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512PubMedCrossRefGoogle Scholar
  34. Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T (2005) Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res 15:352–363PubMedCrossRefGoogle Scholar
  35. Gaasterland T (1998) Structural genomics: bioinformatics in the driver’s seat. Nat Biotechnol 16:625–627PubMedCrossRefGoogle Scholar
  36. Ginalski K, Grishin NV, Godzik A, Rychlewski L (2005) Practical lessons from protein structure prediction. Nucleic Acids Res 33:1874–1891PubMedCrossRefGoogle Scholar
  37. Gonzalez JM, Masuchi Y, Robb FT, Ammerman JW, Maeder DL, Yanagibayashi M, Tamaoka J, Kato C (1998) Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130PubMedCrossRefGoogle Scholar
  38. Hart DJ, Tarendeau F (2006) Combinatorial library approaches for improving soluble protein expression in Escherichia coli. Acta Crystallogr D Biol Crystallogr 62:19–26PubMedCrossRefGoogle Scholar
  39. Hashimoto Y, Yano T, Kuramitsu S, Kagamiyama H (2001) Disruption of Thermus thermophilus genes by homologous recombination using a thermostable kanamycin-resistant marker. FEBS Lett 506:231–234PubMedCrossRefGoogle Scholar
  40. Henne A, Bruggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk HP, Kramer W, Merkl R, Gottschalk G, Fritz HJ (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22:547–553PubMedCrossRefGoogle Scholar
  41. Holden JF, Poole FL, Tollaksen SL, Giometti CS, Lim H, Yates JR, Adams MWW (2001) Identification of membrane proteins in the hyperthermophilic archaeon Pyrococcus furiosus using proteomics and prediction programs. Comp Funct Genomics 2:275–288CrossRefPubMedGoogle Scholar
  42. Holm L, Sander C (1994) Searching protein structure databases has come of age. Proteins 19:165–173PubMedCrossRefGoogle Scholar
  43. Holm L, Sander C (1997) New structure—novel fold?. Structure 5:165–171PubMedCrossRefGoogle Scholar
  44. Hondoh T, Kato A, Yokoyama S, Kuroda Y (2006) Computer-aided NMR assay for detecting natively folded structural domains. Protein Sci 15:871–883PubMedCrossRefGoogle Scholar
  45. Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga-maritima sp-nov represents a new genus of unique extremely thermophilic eubacteria growing up to 90-degrees-C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  46. Ito K, Arai R, Fusatomi E, Kamo-Uchikubo T, Kawaguchi SI, Akasaka R, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S (2006) Crystal structure of the conserved protein TTHA0727 from Thermus thermophilus HB8 at 1.9 angstrom resolution: a CMD family member distinct from carboxymuconolactone decarboxylase (CMD) and AhpD. Protein Sci 15:1187–1192PubMedCrossRefGoogle Scholar
  47. Jenney FE, Brereton PS, Izumi M, Poole FL, Shah C, Sugar FJ, Lee HS, Adams MWW (2005) High-throughput production of Pyrococcus furiosus proteins: considerations for metalloproteins. J Synchrotron Radiat 12:8–12PubMedCrossRefGoogle Scholar
  48. Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A (2002) The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 9:27–31PubMedCrossRefGoogle Scholar
  49. Koyama Y, Hoshino T, Tomizuka N, Furukawa K (1986) Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166:338–340PubMedGoogle Scholar
  50. Lecompte O, Ripp R, Puzos-Barbe V, Duprat S, Heilig R, Dietrich J, Thierry JC, Poch O (2001) Genome evolution at the genus level: comparison of three complete genomes of hyperthermophilic archaea. Genome Res 11:981–993PubMedCrossRefGoogle Scholar
  51. Lee CH, Jung JW, Yee A, Arrowsmith CH, Lee W (2004) Solution structure of a novel calcium binding protein, MTH1880, from Methanobacterium thermoautotrophicum. Protein Sci 13:1148–1154PubMedCrossRefGoogle Scholar
  52. Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T, Vincent J, Robb A, Brinen LS, Miller MD, McPhillips TM, Miller MA, Scheibe D, Canaves JM, Guda C, Jaroszewski L, Selby TL, Elsliger MA, Wooley J, Taylor SS, Hodgson KO, Wilson IA, Schultz PG, Stevens RC (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci USA 99:11664–11669PubMedCrossRefGoogle Scholar
  53. Liu JY, Huang CD, Shin DH, Yokota H, Jancarik J, Kim JS, Adams PD, Kim R, Kim SH (2005) Crystal structure of a heat-inducible transcriptional repressor HrcA from Thermotoga maritima: structural insight into DNA binding and dimerization. J Mol Biol 350:987–996PubMedCrossRefGoogle Scholar
  54. Liu X, Fan K, Wang W (2004) The number of protein folds and their distribution over families in nature. Proteins 54:491–499PubMedCrossRefGoogle Scholar
  55. Mallick P, Goodwill KE, Fitz-Gibbon S, Miller JH, Eisenberg D (2000) Selecting protein targets for structural genomics of Pyrobaculum aerophilum: validating automated fold assignment methods by using binary hypothesis testing. Proc Natl Acad Sci USA 97:2450–2455PubMedCrossRefGoogle Scholar
  56. Marsden RL, Lee D, Maibaum M, Yeats C, Orengo CA (2006) Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space. Nucleic Acids Res 34:1066–1080PubMedCrossRefGoogle Scholar
  57. Marsischky G, LaBaer J (2004) Many paths to many clones: a comparative look at high-throughput cloning methods. Genome Res 14:2020–2028PubMedCrossRefGoogle Scholar
  58. Martinez-Cruz LA, Dreyer MK, Boisvert DC, Yokota H, Martinez-Chantar ML, Kim R, Kim SH (2002) Crystal structure of MJ1247 protein from M. jannaschii at 2.0 A resolution infers a molecular function of 3-hexulose-6-phosphate isomerase. Structure (Camb) 10:195–204CrossRefGoogle Scholar
  59. Mayer KL, Qu Y, Bansal S, LeBlond PD, Jenney FE, Brereton PS, Adams MWW, Xu Y, Prestegard JH (2006) Structure determination of a new protein from backbone-centered NMR data and NMR-assisted structure prediction. Proteins Struct Funct Bioinform 65:480–489CrossRefGoogle Scholar
  60. McPherson A (2004) Protein crystallization in the structural genomics era. J Struct Funct Genomics 5:3–12PubMedCrossRefGoogle Scholar
  61. Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323–329PubMedCrossRefGoogle Scholar
  62. Orengo CA, Todd AE, Thornton JM (1999) From protein structure to function. Curr Opin Struct Biol 9:374–382PubMedCrossRefGoogle Scholar
  63. Oshima T, Imahori K (1971) Isolation of an extreme thermophile and thermostability of its transfer ribonucleic-acid and ribosomes. J Gen Appl Microbiol 17:513–517Google Scholar
  64. Peti W, Etezady-Esfarjani T, Herrmann T, Klock HE, Lesley SA, Wuthrich K (2004) NMR for structural proteomics of Thermotoga maritima: screening and structure determination. J Struct Funct Genomics 5:205–215PubMedCrossRefGoogle Scholar
  65. Poole FL 2nd, Gerwe BA, Hopkins RC, Schut GJ, Weinberg MV, Jenney FE Jr, Adams MW (2005) Defining genes in the genome of the hyperthermophilic archaeon Pyrococcus furiosus: implications for all microbial genomes. J Bacteriol 187:7325–7332PubMedCrossRefGoogle Scholar
  66. Protein Structure Initiative P (2005), vol 2005. NIGMS/NIH Protein Structure Initiative
  67. Pusey ML, Liu ZJ, Tempel W, Praissman J, Lin D, Wang BC, Gavira JA, Ng JD (2005) Life in the fast lane for protein crystallization and X-ray crystallography. Prog Biophys Mol Biol 88:359–386PubMedCrossRefGoogle Scholar
  68. Rees DC (2001) Crystallographic analyses of hyperthermophilic proteins. Methods Enzymol 334:423–437PubMedGoogle Scholar
  69. Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157PubMedCrossRefGoogle Scholar
  70. Robinson-Rechavi M, Alibes A, Godzik A (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 356:547–557PubMedCrossRefGoogle Scholar
  71. Robinson-Rechavi M, Godzik A (2005) Structural genomics of Thermotoga maritima proteins shows that contact order is a major determinant of protein thermostability. Structure (Camb) 13:857–860CrossRefGoogle Scholar
  72. Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B (2006) Effective factors in thermostability of thermophilic proteins. Biophys Chem 119:256–270PubMedCrossRefGoogle Scholar
  73. Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evdokimova E, Doherty-Kirby A, Lajoie GA, Thornton JM, Arrowsmith CH, Savchenko A, Joachimiak A, Edwards AM (2003) Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J Biol Chem 278:26039–26045PubMedCrossRefGoogle Scholar
  74. Saridakis V, Christendat D, Kimber MS, Dharamsi A, Edwards AM, Pai EF (2001) Insights into ligand binding and catalysis of a central step in NAD+ synthesis: structures of Methanobacterium thermoautotrophicum NMN adenylyltransferase complexes. J Biol Chem 276:7225–7232PubMedCrossRefGoogle Scholar
  75. Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, Pavlova M, Semesi A, Northey J, Beasley S, Lan N, Das R, Gerstein M, Arrowmith CH, Edwards AM (2003) Strategies for structural proteomics of prokaryotes: quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Proteins 50:392–399PubMedCrossRefGoogle Scholar
  76. Service R (2005) Structural biology. Structural genomics, round 2. Science 307:1554–1558PubMedCrossRefGoogle Scholar
  77. Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedGoogle Scholar
  78. Sugar FJ, Jenney FE Jr, Poole FL 2nd, Brereton PS, Izumi M, Shah C, Adams MW (2005) Comparison of small- and large-scale expression of selected Pyrococcus furiosus genes as an aid to high-throughput protein production. J Struct Funct Genomics 6:149–158PubMedCrossRefGoogle Scholar
  79. Szilagyi A, Zavodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:493–504PubMedCrossRefGoogle Scholar
  80. Tempel W, Liu ZJ, Schubot FD, Shah A, Weinberg MV, Jenney FE Jr, Arendall WB 3rd, Adams MW, Richardson JS, Richardson DC, Rose JP, Wang BC (2004) Structural genomics of Pyrococcus furiosus: X-ray crystallography reveals 3D domain swapping in rubrerythrin. Proteins 57:878–882PubMedCrossRefGoogle Scholar
  81. Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Progress of structural genomics initiatives: an analysis of solved target structures. J Mol Biol 348:1235–1260PubMedCrossRefGoogle Scholar
  82. Valafar H, Mayer KL, Bougault CM, LeBlond PD, Jenney FE Jr, Brereton PS, Adams MW, Prestegard JH (2004) Backbone solution structures of proteins using residual dipolar couplings: application to a novel structural genomics target. J Struct Funct Genomics 5:241–254PubMedCrossRefGoogle Scholar
  83. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  84. Vincentelli R, Canaan S, Offant J, Cambillau C, Bignon C (2005) Automated expression and solubility screening of His-tagged proteins in 96-well format. Anal Biochem 346:77–84PubMedCrossRefGoogle Scholar
  85. Wang BC, Adams MW, Dailey H, DeLucas L, Luo M, Rose J, Bunzel R, Dailey T, Habel J, Horanyi P, Jenney FE Jr, Kataeva I, Lee HS, Li S, Li T, Lin D, Liu ZJ, Luan CH, Mayer M, Nagy L, Newton MG, Ng J, Poole FL 2nd, Shah A, Shah C, Sugar FJ, Xu H (2005) Protein production and crystallization at SECSG—an overview. J Struct Funct Genomics 6:233–243PubMedCrossRefGoogle Scholar
  86. Wolfson HJ, Shatsky M, Schneidman-Duhovny D, Dror O, Shulman-Peleg A, Ma BY, Nussinov R (2005) From structure to function: methods and applications. Curr Protein Pept Sci 6:171–183PubMedCrossRefGoogle Scholar
  87. Yakunin AF, Yee AA, Savchenko A, Edwards AM, Arrowsmith CH (2004) Structural proteomics: a tool for genome annotation. Curr Opin Chem Biol 8:42–48PubMedCrossRefGoogle Scholar
  88. Yang Z, Savchenko A, Yakunin A, Zhang R, Edwards A, Arrowsmith C, Tong L (2003) Aspartate dehydrogenase, a novel enzyme identified from structural and functional studies of TM1643. J Biol Chem 278:8804–8808PubMedCrossRefGoogle Scholar
  89. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7:39–43PubMedCrossRefGoogle Scholar
  90. Yokoyama S (2005) [Large-scale structural proteomics project at RIKEN: present and future]. Tanpakushitsu Kakusan Koso 50:836–845PubMedGoogle Scholar
  91. Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y, Miki K, Masui R, Kuramitsu S (2000) Structural genomics projects in Japan. Nat Struct Biol 7(Suppl):943–945PubMedCrossRefGoogle Scholar
  92. Zarembinski TI, Hung LW, Mueller-Dieckmann HJ, Kim KK, Yokota H, Kim R, Kim SH (1998) Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci USA 95:15189–193PubMedCrossRefGoogle Scholar
  93. Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–715PubMedGoogle Scholar
  94. Zhang R, Skarina T, Evdokimova E, Edwards A, Savchenko A, Laskowski R, Cuff ME, Joachimiak A (2006) Structure of SAICAR synthase from Thermotoga maritima at 2.2 angstroms reveals an unusual covalent dimer. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:335–339PubMedCrossRefGoogle Scholar
  95. Zhang RG, Skarina T, Katz JE, Beasley S, Khachatryan A, Vyas S, Arrowsmith CH, Clarke S, Edwards A, Joachimiak A, Savchenko A (2001) Structure of Thermotoga maritima stationary phase survival protein SurE: a novel acid phosphatase. Structure (Camb) 9:1095–1106CrossRefGoogle Scholar
  96. Zhou CZ, Chen YX (2004) Developments in structural genomics: protein purification and function interpretation. Curr Genomics 5:37–48CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations