Extremophiles

, Volume 11, Issue 5, pp 667–673

Organic solutes in Rubrobacter xylanophilus: the first example of di-myo-inositol-phosphate in a thermophile

  • Nuno Empadinhas
  • Vítor Mendes
  • Catarina Simões
  • Maria S. Santos
  • Ana Mingote
  • Pedro Lamosa
  • Helena Santos
  • Milton S. da Costa
Original Paper

Abstract

The thermophilic and halotolerant nature of Rubrobacter xylanophilus led us to investigate the accumulation of compatible solutes in this member of the deepest lineage of the Phylum Actinobacteria. Trehalose and mannosylglycerate (MG) were the major compounds accumulated under all conditions examined, including those for optimal growth. The addition of NaCl to a complex medium and a defined medium had a slight or negligible effect on the accumulation of these compatible solutes. Glycine betaine, di-myo-inositol-phosphate (DIP), a new phosphodiester compound, identified as di-N-acetyl-glucosamine phosphate and glutamate were also detected but in low or trace levels. DIP was always present, except at the highest salinity examined (5% NaCl) and at the lowest temperature tested (43°C). Nevertheless, the levels of DIP increased with the growth temperature. This is the first report of MG and DIP in an actinobacterium and includes the identification of the new solute di-N-acetyl-glucosamine phosphate.

Keywords

Rubrobacter xylanophilus Organic solutes Mannosylglycerate Di-myo-inositol-phosphate 

References

  1. Bax A, Summers MF (1986) 1H and 13C assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094CrossRefGoogle Scholar
  2. Bouveng H, Lindberg B, Wickberg B (1955) Low-molecular carbohydrates in algae. Structure of the glyceric acid mannoside from red algae. Acta Chem Scand 9:807–809CrossRefGoogle Scholar
  3. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846 PubMedGoogle Scholar
  4. Carreto L, Moore E, Nobre MF, Wait R, Riley PW, Sharp RJ, da Costa MS (1996) Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465CrossRefGoogle Scholar
  5. Chen MY, Wu SH, Lin GH, Lu CP, Lin YT, Chang WC, Tsay SS (2004) Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol 54:1849–1855PubMedCrossRefGoogle Scholar
  6. da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153PubMedGoogle Scholar
  7. De Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208PubMedGoogle Scholar
  8. Degryse E, Glansdorff N, Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117:189–196PubMedCrossRefGoogle Scholar
  9. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27RPubMedCrossRefGoogle Scholar
  10. Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206PubMedGoogle Scholar
  11. Ferreira AC, Nobre MF, Moore E, Rainey FA, Battista JR, da Costa MS (1999) Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3:235–238PubMedCrossRefGoogle Scholar
  12. Hoelzle I, Streeter JG (1990) Increased accumulation of trehalose in rhizobia cultured under 1% Oxygen. Appl Environ Microbiol 56:3213–3215PubMedGoogle Scholar
  13. Lamosa P, Burke A, Peist R, Huber R, Liu MY, Silva G, Rodrigues-Pousada C, LeGall J, Maycock C, Santos H (2000) Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl Environ Microbiol 66:1974–1979PubMedCrossRefGoogle Scholar
  14. Lamosa P, Gonçalves LG, Rodrigues MV, Martins LO, Raven NDH, Santos H (2006) Occurrence of 1-Glyceryl-1-myo-inosityl-phosphate in hyperthermophiles. Appl Environ Microbiol 72:6169–6173PubMedCrossRefGoogle Scholar
  15. McBride MJ, JC Ensign (1987) Metabolism of endogenous trehalose by Streptomyces griseus spores and by spores or cells of other actinomycetes. J Bacteriol 169:5002–5007PubMedGoogle Scholar
  16. Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407PubMedCrossRefGoogle Scholar
  17. Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019PubMedCrossRefGoogle Scholar
  18. Santos H, da Costa MS (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4:501–509PubMedCrossRefGoogle Scholar
  19. Shimakata T, Minatogawa Y (2000) Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii. Arch Biochem Biophys 380:331–338PubMedCrossRefGoogle Scholar
  20. Silva Z, Borges N, Martins LO, Wait R, da Costa MS, Santos H (1999) Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles 3:163–172PubMedCrossRefGoogle Scholar
  21. Suzuki K, Collins MD, Iijima E, Komagata K (1988) Chemotaxonomic characterization of a radiotolerant bacterium, Arthrobacter radiotolerans: description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 52:33–40CrossRefGoogle Scholar
  22. Williams RAD, da Costa MS (1992) The genus Thermus and related microorganisms. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Heidelberg, pp 3745–3753Google Scholar
  23. Wolf A, Kramer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134PubMedCrossRefGoogle Scholar
  24. Woodruff PJ, Carlson BL, Siridechadilok B, Pratt MR, Senaratne RH, Mougous JD, Riley LW, Williams SJ, Bertozzi CR (2004) Trehalose is required for growth of Mycobacterium smegmatis. J Biol Chem 279:28835–28843PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Nuno Empadinhas
    • 1
  • Vítor Mendes
    • 1
  • Catarina Simões
    • 1
  • Maria S. Santos
    • 1
  • Ana Mingote
    • 2
  • Pedro Lamosa
    • 2
  • Helena Santos
    • 2
  • Milton S. da Costa
    • 3
  1. 1.Centro de Neurociências e Biologia Celular, Departamento de ZoologiaUniversidade de CoimbraCoimbraPortugal
  2. 2.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  3. 3.Departamento de BioquímicaUniversidade de CoimbraCoimbraPortugal

Personalised recommendations