, Volume 10, Issue 6, pp 525–530 | Cite as

Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap

  • Rebecca B. Hawkes
  • Peter D. Franzmann
  • Graham O’hara
  • Jason J. Plumb
Original Paper


A new species of Archaea was isolated from an industrial mineral sulphide bioleach heap. Strain BH2, a non-motile pleomorphic coccus, was capable of chemomixotrophic growth on ferrous sulphate and yeast extract. Growth was not supported in the absence of yeast extract. Phylogenetic analysis based on the 16S rRNA gene showed that strain BH2 was most closely related to the species Ferroplasma acidiphilum; however, it showed only 95% sequence similarity with this species. Strain BH2 had a temperature optimum of 53.6°C and a temperature range for growth between 22 and 63°C. Thus, it is the first moderately thermophilic member of the genus Ferroplasma. The optimum pH for the growth of the strain occurred between pH 1.0 and 1.2 and the lowest pH at which growth was observed was 0.4. Based on 16S rRNA gene sequence analysis and other physiological characteristics, strain BH2 constitutes a new species within the genus Ferroplasma. The name Ferroplasma cupricumulans is proposed for the new species and strain BH2 (DSM 16651) is proposed as the type strain.


Acidophiles Heap bioleaching Ferroplasma Moderate thermophile Archaea Ferroplasma cupricumulans sp. nov. 



The authors would like to acknowledge Paul Monaghan and the Myanmar Ivanhoe Copper company (MICCL) for their assistance with sampling. We also would like to thank Prof. Hans G. Trüper for the Latin name of Ferroplasma cupricumulans. Dr Peter Schumann of Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) determined the mol% G + C content of strain BH2.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Miller W, Lipman DL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 25:3389–3402CrossRefPubMedGoogle Scholar
  2. Bridge TAM, Johnson B (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidising bacteria. Appl Environ Microbiol 64(6):2181–2186PubMedGoogle Scholar
  3. Burton NP, Norris PR (2000) Microbiology of acidic, geothermal springs of Montserrat: environmental rDNA analysis. Extremophiles 4:315–320CrossRefPubMedGoogle Scholar
  4. Dopson M, Baker-Austin C, Hind A, Bowman J, Bond P (2004) Characterisation of Ferroplasma isolates and “Ferroplasma acidarmanus” sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70(4):2079–2088CrossRefPubMedGoogle Scholar
  5. Edwards KJ, Bond PL, Gihring TM, Banfield JF (2000) An archaeal iron-oxidising extreme acidophile important in acid mine drainage. Science 287:1796–1799CrossRefPubMedGoogle Scholar
  6. Franzmann PD, Haddad CM, Hawkes RB, Robertson WJ, Plumb JJ (2005) Effects of temperature on the rates of iron and sulphur oxidation by selected bioleaching Bacteria and Archaea: application of the Ratkowsky equation. Min Eng 18(13):1304–1314CrossRefGoogle Scholar
  7. Goebel BM, Norris PR, Burton NP (2000) Acidophiles in Biomining. In: Priest FG, Goodfellow M (eds) Applied microbial systematics. Kulwer Academic, The NetherlandsGoogle Scholar
  8. Golyshina OV, Pivovarova TA, Karavaiko GI, Kondrat’eva TF, Moore ERB, Abraham W, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidising, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol 50:997–1006PubMedGoogle Scholar
  9. Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto river. Appl Environ Microbiol 69:4853–4865CrossRefPubMedGoogle Scholar
  10. Hawkes RB, Franzmann PD, Plumb JJ (2005) Moderate thermophiles including Ferroplasma cyprexacervatum sp. nov. dominate an industrial-scale chalcocite heap bioleaching operation. In: Harrison STL, Rawlings DE, Petersen J (eds) Proceedings of the sixteenth international biohydrometallurgy symposium, pp 657–666Google Scholar
  11. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New YorkGoogle Scholar
  12. Johnson B, McGinness S (1991) Ferric iron reduction by acidophilic microorganisms. Appl Environ Microbiol 57(1):207–211PubMedGoogle Scholar
  13. Kinnunen PHM, Puhakka J (2004) High-rate ferric sulphate generation by Leptospirillum ferriphilum dominated biofilm and the role of jarosite in biomass retainment in fluidised-bed reactor. Biotechnol Bioeng 85:683–694CrossRefPubMedGoogle Scholar
  14. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371CrossRefPubMedGoogle Scholar
  15. Okibe N, Gericke M, Hallberg KB, Johnson DB (2003) Enumeration and characterisation of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 64(4):1936–1943CrossRefGoogle Scholar
  16. Plumb JJ, Bell J, Stuckey DC (2001) Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl Environ Microbiol 67:3226–3235CrossRefPubMedGoogle Scholar
  17. Plumb JJ, Gibbs B, Stott MB, Robertson WJ, Gibson WJ, Nichols PD, Watling HR, Franzmann PD (2002) Enrichment and characterisation of thermophilic acidophiles for the bioleaching of mineral sulphides. Min Eng 15:787–794CrossRefGoogle Scholar
  18. Ratkowsky DA, Lowry RK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial growth throughout the entire biokinetic range. J Bacteriol 154:1222–1226PubMedGoogle Scholar
  19. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91CrossRefPubMedGoogle Scholar
  20. Segerer A, Langworthy TA, Stetter KO (1988) Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10(2):161–171Google Scholar
  21. Schleper C, Puehler G, Holz I, Gambacorta A, Janekovic D, Santarius U, Klenk H-P, Zillig W (1995) Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol 177(24):7050–7059PubMedGoogle Scholar
  22. Wilson AD (1960) The micro-determination of ferrous iron in silicate minerals by volumetric and colourimetric method. Analyst 85:823–827CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Rebecca B. Hawkes
    • 1
    • 2
  • Peter D. Franzmann
    • 1
  • Graham O’hara
    • 2
  • Jason J. Plumb
    • 1
  1. 1.Centre for Environment and Life SciencesCSIRO Land and WaterWembleyAustralia
  2. 2.School of Biological Sciences and Biotechnology Murdoch UniversityMurdochAustralia

Personalised recommendations