Advertisement

Extremophiles

, Volume 10, Issue 5, pp 403–410 | Cite as

Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt

  • Marie Asao
  • Deborah O. Jung
  • Laurie A. Achenbach
  • Michael T. Madigan
Original Paper

Abstract

A morphologically distinct heliobacterium, strain HH, was isolated from Lake El Hamra, a soda lake in the Wadi El Natroun region of northwest Egypt. Strain HH consisted of ring-shaped cells that remained attached after cell division to yield coils of various lengths. Strain HH showed several of the physiological properties of known heliobacteria and grouped in the Heliorestis clade by virtue of its phylogeny and alkaliphily. The closest relative of strain HH was the filamentous alkaliphilic heliobacterium Heliorestis daurensis. However, genomic DNA:DNA hybridization results clearly indicated that strain HH was a distinct species of Heliorestis. Based on its unique phenotypic and genetic properties we describe strain HH here as a new species of the genus Heliorestis, H. convoluta sp. nov.

Keywords

Anoxygenic phototrophic bacteria Heliobacteria Heliorestis Akaliphiles Wadi El Natroun Soda lakes 

Notes

Acknowledgements

This work was supported in part by US National Science Foundation grant MCB 0237576. We thank Prof. Aharon Oren, Hebrew University Jerusalem, for nomenclatural advice. We also thank Profs. Ahmed Shoreit (Assiut University, Egypt) and M.S.A. Shabeb (Aswan University, Egypt) for funding the field trip and escorting MTM into the field. We also thank an anonymous Bedouin farmer whose land lay adjacent to Lake El Hamra for help in gaining access to and sampling this habitat.

References

  1. Amesz J (1995) The antenna-reaction center complex of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 687–697Google Scholar
  2. Brockmann H, Lipinski A (1983) Bacteriochlorophyll g. A new bacteriochlorophyll from Heliobacterium chlorum. Arch Microbiol 136:17–19CrossRefGoogle Scholar
  3. Bryantseva IA, Gorlenko VM, Kompantseva EL, Achenbach LA, Madigan MT (1999) Heliorestis daurensis, gen. nov. sp. nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a Siberian soda lake. Arch Microbiol 172:167–174CrossRefPubMedGoogle Scholar
  4. Bryantseva IA, Gorlenko VM, Kompantseva EI, Tourova TP, Kuznetsov BB, Osipov GA (2000) Alkaliphilic heliobacterium Heliorestis baculata sp. nov., and emended description of the genus Heliorestis. Arch Microbiol 174:283–291CrossRefPubMedGoogle Scholar
  5. Gest H, Favinger JL (1983) Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll. Arch Microbiol 136:11–16CrossRefGoogle Scholar
  6. Imhoff JF (2001) True marine and halophilic anoxygenic phototrophic bacteria. Arch Microbiol 176:243–254CrossRefPubMedGoogle Scholar
  7. Imhoff JF, Hashwa F, Trüper HG (1978) Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch Hydrobiol 84:381–388Google Scholar
  8. Imhoff JF, Sahl HG, Soliman GSH, Trüper HG (1979) The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiol J 1:219–234CrossRefGoogle Scholar
  9. Imhoff JF, Trüper HG (1989) Purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Vol 3. Williams and Wilkins, Baltimore, pp 1658–1682Google Scholar
  10. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200CrossRefPubMedGoogle Scholar
  11. Jung DO, Achenbach LA, Karr EA, Takaichi S, Madigan MT (2004) A gas vesiculate planktonic strain of the purple nonsulfur bacterium Rhodoferax antarcticus isolated from Lake Fryxell, Dry Valleys, Antarctica. Arch Microbiol 182:236–243CrossRefPubMedGoogle Scholar
  12. Kimble LK, Madigan MT (1992) N2 fixation and nitrogen metabolism in heliobacteria. Arch Microbiol 158:155–161CrossRefGoogle Scholar
  13. Kimble LK, Madigan MT (2001) Molecular evidence that the capacity for endosporulation is universal among phototrophic heliobacteria. FEMS Microbiol Lett 199:191–195PubMedCrossRefGoogle Scholar
  14. Kimble LK, Mandelco L, Woese CR, Madigan MT (1995). Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163:259–267Google Scholar
  15. Kimble LK, Stevenson AK, Madigan MT (1994). Chemotrophic growth of heliobacteria in darkness. FEMS Microbiol Lett 115:51–56PubMedCrossRefGoogle Scholar
  16. Kobayashi M, van de Meent EJ, Erkelens C, Amesz J, Ikegami I, Watanabe T (1991) Bacteriochlorophyll g epimer as a possible reaction center component of heliobacteria. Biochim Biophys Acta 1057:89–96CrossRefGoogle Scholar
  17. Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 39–111Google Scholar
  18. Madigan MT (1992). The Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes: a handbook on the biology of bacteria ecophysiology, isolation, identification, applications. Springer, Berlin Heidelberg New York, pp 1981–1992Google Scholar
  19. Madigan MT (2001) Heliobacteriaceae. In: Boone D, Castenholz RW, Garrity GM (eds), Bergey’s manual of systematic bacteriology, 2nd edn,Vol. 1, Springer, Berlin Heidelberg New York, pp. 625–630Google Scholar
  20. Madigan MT, Ormerod JG (1995). Taxonomy, physiology, and ecology of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 17–30Google Scholar
  21. Milford AD, Jung DO, Achenbach LA, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol. 174:18–27CrossRefPubMedGoogle Scholar
  22. Miller KR, Jacob JS, Smith U, Kdaczkowski S, Bowman MK (1986) Heliobacterium chlorum: cell organization and structure. Arch Microbiol 146:111–114CrossRefPubMedGoogle Scholar
  23. Oremland RS, Miller LG (1993) Biogeochemistry of natural gases in three alkaline permanently stratified meromictic lakes. In: The future of energy gases, USGS Paper 1570:439–452Google Scholar
  24. Ormerod JG, Kimble LK, Nesbakken T, Torgersen TA, Woese CR, Madigan MT (1996) Heliophilum fasciatum gen. nov. et sp. nov., and Heliobacterium gestii sp. nov. endospore-forming heliobacteria from rice field soils. Arch Microbiol 165:226–234CrossRefPubMedGoogle Scholar
  25. Ormerod J, Nesbakken T, Torgersen Y (1990) Phototrophic bacteria that form heat resistant endospores. In: Baltscheffsky M (ed) Current research in photosynthesis, Vol 4. Kluwer, Dordrecht, pp 935–938Google Scholar
  26. Pfennig N, Wagener S (1986) An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Meth 4:303–306CrossRefGoogle Scholar
  27. Pickett MW, Williamson MP, Kelly DJ (1994) An enzyme and 13C-NMR study of carbon metabolism in heliobacteria. Photosynth Res 41:75–88CrossRefGoogle Scholar
  28. Starynin DA, Gorlenko VM (1993) Sulphide-oxidizing spore-forming heliobacteria isolated from a thermal sulphide spring. Microbiology 62:343–347Google Scholar
  29. Stevenson AK, Kimble LK, Woese CR, Madigan MT (1997) Characterization of new heliobacteria and their habitats. Photosynth Res 53:1–12CrossRefGoogle Scholar
  30. Swofford DL (1998) PAUP* phylogenetic analysis using parsimony, version 4.0 Smithsonian Institution, Washington, DCGoogle Scholar
  31. Takaichi S, Inoue K, Akaike M, Kobayashi M, Oh-oka H, Madigan MT (1997) The major carotenoid in all species of heliobacteria is the C30 carotenoid 4,4′-diaponeurosporene, not neurosporene. Arch Microbiol 168:277–281CrossRefPubMedGoogle Scholar
  32. Takaichi S, Oh-oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179:95–100PubMedGoogle Scholar
  33. Wahlund TM, Castenholz RW, Woese CR, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum, nov. sp. Arch Microbiol 156:81–91CrossRefGoogle Scholar
  34. Woese CR, Debrunner-Vossbrinck BA, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible photosynthetic ancestry. Science 229:762–765PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marie Asao
    • 1
  • Deborah O. Jung
    • 1
  • Laurie A. Achenbach
    • 1
  • Michael T. Madigan
    • 1
  1. 1.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations