Advertisement

Extremophiles

, Volume 10, Issue 5, pp 363–372 | Cite as

Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost

  • Jiunn C. N. Fong
  • Charles J. Svenson
  • Kenlee Nakasugi
  • Caine T. C. Leong
  • John P. Bowman
  • Betty Chen
  • Dianne R. Glenn
  • Brett A. Neilan
  • Peter L. RogersEmail author
Original Paper

Abstract

In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50–80°C and pH 6.0–8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA–DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542T). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

Keywords

Geobacillus Thermophiles Ethanol production Ethanol-tolerance Waste compost 

Notes

Acknowledgements

This work was supported in part by National Renewable Energy Laboratory (NREL) under the US Department of Energy Sub-contract XXL-9-29034-03 and the International Postgraduate Research Scholarship (IPRS) scheme funded by the Australia Department of Education, Science and Training (DEST).

References

  1. Ahmad S, Scopes RK, Rees GN, Patel BKC (2000) Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523PubMedGoogle Scholar
  2. Amann R, Schleifer KH (2001) Nucleic acid probes and their application in environmental microbiology. In: Garrity GM, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. The William and Wilkins Co., Baltimore, pp 67–82Google Scholar
  3. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206CrossRefGoogle Scholar
  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1994) Preparation and analysis of DNA. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.0.1–2.4.5Google Scholar
  5. Banat IM, Marchant R (1995) Characterization and potential industrial applications of five novel, thermotolerant, fermentative, yeast strains. World J Microbiol Biotechnol 11:304–306CrossRefGoogle Scholar
  6. Banat IM, Nigam P, Singh D, Marchant R, McHale AP (1998) Review: ethanol production at elevated temperatures and alcohol concentrations: Part I. Yeasts in general. World J Microbiol Biotechnol 14:809–821CrossRefGoogle Scholar
  7. Bowman JP, McCammon SA, Brown JL, McMeekin TA (1998) Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48:1213–1222Google Scholar
  8. Claus D, Berkeley RCW (1986) Genus Bacillus Cohn 1872. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. The William and Wilkins Co., Baltimore, pp 1105–1139Google Scholar
  9. Cook J, Beyea J (2000) Bioenergy in the United States: progress and possibilities. Biomass Bioenerg 18:441–455CrossRefGoogle Scholar
  10. Demain AL, Newcomb M, Wu JH (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154CrossRefPubMedGoogle Scholar
  11. Deng M, Coleman JR (1999) Ethanol synthesis by genetic engineering in cyanobacteria. Appl Environ Microbiol 65:523–528PubMedGoogle Scholar
  12. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266CrossRefPubMedGoogle Scholar
  13. Doetsch RN (1981) Determinative methods of light microscopy. In: Gerhardt P et al (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 21–33Google Scholar
  14. Doi RH (2003) Microbial conversion of corn stalks to riches. J Bacteriol 185:701–702CrossRefPubMedGoogle Scholar
  15. Edwards C (1990) Thermophiles. In: Edwards C (eds) Microbiology of extreme environments. McGraw-Hill Publishing Co., New York, pp 1–32Google Scholar
  16. Eguchi M, Nishikawa T, MacDonald K, Cavicchioli R, Gottschal J, Kjelleberg S (1996) Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62:1287–1294PubMedGoogle Scholar
  17. Esser K, Karsch T (1984) Bacteria ethanol production: advantages and disadvantages. Process Biochem 19:116–121Google Scholar
  18. Ezaki T, Hashimoto Y, Takeuchi N, Yamamoto H, Liu S-L, Miura H, Matsui K, Yabuuchi E (1988) Simple genetic method to identify viridans group Streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 29:1708–1713Google Scholar
  19. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  20. Fortina MG, Mora D, Schumann P, Parini C, Manachini PL, Stackebrandt E (2001) Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmand et al. 2000) comb. nov. Int J Syst Evol Microbiol 51:2063–2071PubMedGoogle Scholar
  21. Gagne A, Chicoine M, Morin A, Houde A (2001) Phenotypic and genotypic characterization of esterase-producing Ureibacillus thermosphaericus isolated from an aerobic digestor of swine waste. Can J Microbiol 47:908–915CrossRefPubMedGoogle Scholar
  22. Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–658CrossRefPubMedGoogle Scholar
  23. Gibson T, Gordon RE (1974) Genus I. Bacillus Cohn 1872. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. The William and Wilkins Co., Baltimore, pp 529–551Google Scholar
  24. Gold RS, Meagher MM, Tong SX, Hutkins RW, Conway T (1996) Cloning and expression of the Zymomonas mobilis “production of ethanol” genes in Lactobacillus casei. Curr Microbiol 33:256–260CrossRefPubMedGoogle Scholar
  25. Gong CS, Gao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241PubMedGoogle Scholar
  26. Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577PubMedGoogle Scholar
  27. Heyndrickx M, Lebbe L, Vancanneyt M, Kersters K, Devos P, Logan NA, Forsyth G, Nazli S, Ali N, Berkeley RCW (1997) A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al. 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended descriptions of A. aneurinilyticus corrig., A. migulanus, and A. thermoaerophilus. Int J Syst Bacteriol 47:808–817Google Scholar
  28. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedGoogle Scholar
  29. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866CrossRefPubMedGoogle Scholar
  30. Johnson JL (1984) Nucleic acids in bacterial classification. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. The William and Wilkins Co., Baltimore, pp 8–11Google Scholar
  31. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (eds) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  32. Kaczowka SJ, Reuter CJ, Talarico LA, Maupin-Furlow JA (2005) Recombinant production of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii. Archaea 1:327–334PubMedCrossRefGoogle Scholar
  33. Kannan V, Mutharasan R (1985) Ethanol fermentation characteristics of Thermoanaerobacter ethanolicus. Enzyme Microb Technol 7:87–89CrossRefGoogle Scholar
  34. Katznelson H (1950) Bacillus pulvifaciens sp. nov., an organism associated with powdery scale of honeybee larvae. J Bacteriol 59:153–155PubMedGoogle Scholar
  35. Klapatch TR, Hogsett DAL, Baskaran S, Pal S, Lynd LR (1994) Organism development and characterization for ethanol production using thermophilic bacteria. Appl Biochem Biotechnol 45–46:209–223CrossRefGoogle Scholar
  36. Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172Google Scholar
  37. Kuhnigk T, Borst E, Breunig A, Konig H, Collins MD, Hutson RA, Kampfer P (1995) Bacillus oleronius sp. nov., a member of the hindgut flora of the termite Reticulitermes santonensis (Feytaud). Can J Microbiol 41:699–706PubMedCrossRefGoogle Scholar
  38. Lamed R, Zeikus JG (1980a) Glucose fermentation pathway of Thermoanaerobium brockii. J Bacteriol 141:1251–1257PubMedGoogle Scholar
  39. Lamed R, Zeikus JG (1980b) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of the catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144:569–578PubMedGoogle Scholar
  40. Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119PubMedCrossRefGoogle Scholar
  41. Lee CK, Ordal ZJ (1967) Regulatory effect of pyruvate on the glucose metabolism of Clostridium thermosaccharolyticum. J Bacteriol 94:530–536PubMedGoogle Scholar
  42. Lee Y, Jain MK, Lee C, Lowe SE, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: Description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51Google Scholar
  43. Liu C, Goodman AE, Dunn NW (1988) Expression of cloned Xanthomonas d-xylose catabolic genes in Zymomonas mobilis. J Biotechnol 7:61–70CrossRefGoogle Scholar
  44. Lovitt RW, Shen G, Zeikus JG (1988) Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol 170:2809–2815PubMedGoogle Scholar
  45. Lynd LR (1990) Large-scale fuel ethanol from lignocellulose. Appl Biochem Biotechnol 24–25:695–719Google Scholar
  46. McBee RH (1950) The anaerobic thermophilic cellulolytic bacteria. Bacteriol Rev 14:51–63PubMedGoogle Scholar
  47. Murray RGE, Doetsch RN, Robinow CF (1994) Determinative and cytological light microscopy. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, pp 21–41Google Scholar
  48. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: description of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446PubMedGoogle Scholar
  49. Neale AD, Scopes RK, Kelly JM (1988) Alcohol production from glucose and xylose using Escherichia coli containing Zymomonas mobilis genes. Appl Microbiol Biotechnol 29:162–167Google Scholar
  50. Neilan BA, Jacobs D, Deldot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697PubMedGoogle Scholar
  51. Ng TK, Ben-Bassat A, Zeikus JG (1981) Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41:1337–1343PubMedGoogle Scholar
  52. Nichols NN, Dien BS, Bothast RB (2003) Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. J Ind Microbiol Biotechnol 30:315–321CrossRefPubMedGoogle Scholar
  53. Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331CrossRefGoogle Scholar
  54. Payton MA, Hartley BS (1985) Mutants of Bacillus stearothermophilus lacking NAD-linked l-lactate dehydrogenase. FEMS Microbiol Lett 26:333–336CrossRefGoogle Scholar
  55. Roberts MS, Nakamura LK, Cohan FM (1996) Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int J Syst Bacteriol 46:470–475PubMedCrossRefGoogle Scholar
  56. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  57. Smibert RM, Krieg NR (1981) General characterization. In: Gerhardt P et al (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 409–443Google Scholar
  58. Smith LDS, Hobbs G (1974) Genus III. Clostridium Prazmowski 1880. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. The William and Wilkins Co., Baltimore, pp 551–572Google Scholar
  59. Sommer P, Georgieva T, Ahring BK (2004) Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose. Biochem Soc Trans 32:283–289PubMedCrossRefGoogle Scholar
  60. Sonnleitner B (1983) Biotechnology of thermophilic bacteria- growth, products, and application. Adv Biochem Eng Biotechnol 28:69–138Google Scholar
  61. Sonnleitner B, Fiechter A, Giovannini F (1984) Growth of Thermoanaerobium brockii in batch and continuous culture at supraoptimal temperatures. Appl Microbiol Biotechnol 19:326–334CrossRefGoogle Scholar
  62. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849CrossRefGoogle Scholar
  63. Vancanneyt M, De Vos P, De Ley J (1987a) Ethanol production from glucose by Clostridium thermosaccharolyticum strains: effect of pH and temperature. Biotechnol Lett 9:567–572CrossRefGoogle Scholar
  64. Vancanneyt M, De Vos P, Kersters K, De Ley J (1987b) Isolation characterization and identification of strictly anaerobic thermophilic ethanol producing bacteria from compost. Syst Appl Microbiol 9:293–298Google Scholar
  65. Wheals AE, Basso LC, Alves DMG, Amorium HV (1999) Fuel ethanol after 25 years. TIBTECH 17:482–487Google Scholar
  66. Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36:1434–1446CrossRefGoogle Scholar
  67. Wiegel J, Ljungdahl LG (1981) Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128:343–348CrossRefGoogle Scholar
  68. Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108CrossRefGoogle Scholar
  69. Wiegel J, Ljungdahl LG, Rawson JR (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810PubMedGoogle Scholar
  70. Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226CrossRefGoogle Scholar
  71. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34CrossRefPubMedGoogle Scholar
  72. Zeigler DR (2005) Application of a recN sequence similarity analysis to the identification of species within the bacterial genus Geobacillus. Int J Syst Evol Microbiol 55:1171–1179CrossRefPubMedGoogle Scholar
  73. Zeikus JG, Hegge PW, Anderson MA (1979) Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48CrossRefGoogle Scholar
  74. Zeikus JG, Ben-Bassat A, Hegge PW (1980) Microbiology of methanogenesis in thermal, volcanic environments. J Bacteriol 143:432–440PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jiunn C. N. Fong
    • 1
  • Charles J. Svenson
    • 2
  • Kenlee Nakasugi
    • 2
  • Caine T. C. Leong
    • 2
  • John P. Bowman
    • 3
  • Betty Chen
    • 2
  • Dianne R. Glenn
    • 2
  • Brett A. Neilan
    • 2
  • Peter L. Rogers
    • 2
    Email author
  1. 1.Environmental Toxicology, 269 Jack Baskin EngineeringUniversity of California Santa CruzSanta CruzUSA
  2. 2.School of Biotechnology and Biomolecular SciencesUniversity of New South WalesSydneyAustralia
  3. 3.School of Agricultural ScienceUniversity of TasmaniaHobartAustralia

Personalised recommendations