Extremophiles

, Volume 10, Issue 4, pp 259–267

Microbial ecology and biodiversity in permafrost

  • Blaire Steven
  • Richard Léveillé
  • Wayne H. Pollard
  • Lyle G. Whyte
Review

Abstract

Permafrost represents 26% of terrestrial soil ecosystems; yet its biology, essentially microbiology, remains relatively unexplored. The permafrost environment is considered extreme because indigenous microorganisms must survive prolonged exposure to subzero temperatures and background radiation for geological time scales in a habitat with low water activity and extremely low rates of nutrient and metabolite transfer. Yet considerable numbers and biodiversity of bacteria exist in permafrost, some of which may be among the most ancient viable life on Earth. This review describes the permafrost environment as a microbial habitat and reviews recent studies examining microbial biodiversity found in permafrost as well as microbial growth and activity at ambient in situ subzero temperatures. These investigations suggest that functional microbial ecosystems exist within the permafrost environment and may have important implications on global biogeochemical processes as well as the search for past or extant life in permafrost presumably present on Mars and other bodies in our solar system.

Keywords

Permafrost Cold-adaptation Dormancy Astrobiology 

References

  1. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326CrossRefPubMedGoogle Scholar
  2. Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345CrossRefPubMedGoogle Scholar
  3. Boyd WL, Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan Arctic. Can J Microbiol 10:917–919PubMedCrossRefGoogle Scholar
  4. Boynton WV, Feldman WC, Squyres SW, Prettyman TH, Bruckner J, Evans LG, Reedy RC, Starr R, Arnold JR, Drake DM, Englert PA, Metzger AE, Mitrofanov I, Trombka JI, D’Uston C, Wanke H, Gasnault O, Hamara DK, Janes DN, Marcialis RL, Maurice S, Mikheeva I, Taylor GJ, Tokar R, Shinohara C (2002) Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:81–85CrossRefPubMedGoogle Scholar
  5. Breezee J, Cady N, Staley JT (2004) Subfreezing growth of the sea ice bacterium “Psychromonas ingrahmii”. Microb Ecol 47:300–304CrossRefPubMedGoogle Scholar
  6. Brinton KLF, Tsapin AI, Gilichinsky DA, McDonald GD (2002) Aspartic acid racemization and age–depth relationships for organic carbon in Siberian permafrost. Astrobiology 2:77–82CrossRefPubMedGoogle Scholar
  7. Cameron RE, Morelli FA (1974) Viable microoganisms from ancient Ross Island and Taylor Valley drill core. Antarct J US 9:113–116Google Scholar
  8. Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517CrossRefPubMedGoogle Scholar
  9. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261CrossRefPubMedGoogle Scholar
  10. Christner BC, Mosley-Thompson E, Thompson LG, Reeve JN (2001) Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ Microbiol 3:570–577CrossRefPubMedGoogle Scholar
  11. Christner BC, Kvitko BHI, Reeve JN (2003) Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183PubMedGoogle Scholar
  12. Cowan DA, Russell N, Mamais A, Sheppard DM (2002) Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431–436CrossRefPubMedGoogle Scholar
  13. Cowan DA, Ah Tow L (2004) Endangered Antarctic environments. Annu Rev Microbiol 58:649–690CrossRefPubMedGoogle Scholar
  14. Deming J (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309CrossRefPubMedGoogle Scholar
  15. Dickinson WW, Rosen MR (2003) Antarctica permafrost: an analogue for water and diagenetic minerals on Mars. Geology 31:199–202CrossRefGoogle Scholar
  16. Dmitriev VV, Suzina NE, Rusakova TG, Gilichinsky DA, Duda VI (2000) Ultrastructural characteristics of natural forms of microorganisms isolated from permafrost grounds of eastern Siberia by the method of low-temperature fractionation. Dokl Biol Sci 378:304–306CrossRefGoogle Scholar
  17. Dumont MG, Murrell JC (2005) Stable isotope probing–linking microbial identity to function. Nat Rev Microbiol 6:499–504CrossRefGoogle Scholar
  18. Franks F (2003) Nucleation of ice and its management in ecosystems. Phil Trans R Soc Lond A 361:557–574CrossRefGoogle Scholar
  19. Friedmann EI (1994) Permafrost as microbial habitat. In: Gilichinsky DA (ed) Viable microorganisms in permafrost. Russian Academy of Sciences, pp 21–26Google Scholar
  20. Gilichinsky D (2002a) Permafrost. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 2367–2385Google Scholar
  21. Gilichinsky DA (2002b) Permafrost model of extraterrestrial habitats. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin Heidelberg New York, pp 125–142Google Scholar
  22. Gilichinsky DA, Khlebnikova GM, Zvyagintsev DG, Fedorov-Davydov DG, Kudryavtseva NN (1989) Microbiology of sedimentary materials in the permafrost zone. Int Geol Rev 31:847–858CrossRefGoogle Scholar
  23. Gilichinsky DA, Vorobyova E, Erokhina LG, Fyordorov-Dayvdov DG, Chaikovskaya NR (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255–263CrossRefPubMedGoogle Scholar
  24. Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglac Process 6:281–291CrossRefGoogle Scholar
  25. Gilichinsky DA, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje JM (2003) Supercooled water brines within permafrost—An unknown ecological niche for microoganisms: a model for astrobiology. Astrobiology 3:331–341CrossRefPubMedGoogle Scholar
  26. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128CrossRefPubMedGoogle Scholar
  27. Harry DG (1989) Ground ice and permafrost. In: Clark MJ (ed) Advances in periglacial geomorphology. Wiley, New York, pp 114–149Google Scholar
  28. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the dry valleys of Antarctica. Science 176:242–245PubMedCrossRefGoogle Scholar
  29. Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350CrossRefPubMedGoogle Scholar
  30. James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res 20:229–235 Google Scholar
  31. Juck DF, Whissell G, Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71:1035–1041CrossRefPubMedGoogle Scholar
  32. Junge K, Krembs C, Deming J, Stierle A, Eicken H (2001) A microscopic approach to investigate bacteria under in situ conditions in sea-ice samples. Ann Glaciol 33:304–310CrossRefGoogle Scholar
  33. Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284CrossRefPubMedGoogle Scholar
  34. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Appl Environ Microbiol 70:550–557CrossRefPubMedGoogle Scholar
  35. Karl DM, Bird DF, Björkman K, Houlihan T, Shackelford R, Tupas L (1999) Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:2144–2147CrossRefPubMedGoogle Scholar
  36. Khlebnikova GM, Gilichinsky DA, Fedorov-Davydov DG, Vorob’eva EA (1990) Quantitative evaluation of microorganisms in permafrost deposits and buried soils. Translated from Mikrobiologiya 59:148–155Google Scholar
  37. Knoblauch C, Jørgensen BB, Harder J (1999a) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl Environ Microbiol 65:4230–4233Google Scholar
  38. Knoblauch C, Sahm K, Jørgensen BB (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulfofrigus oceanense gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. Int J Syst Evol Microbiol 49:1631–1643CrossRefGoogle Scholar
  39. Kostka JE, Thamdrup B, Nohr Glud R, Canfield DE (1999) Rates and pathways of carbon oxidation in permanently cold Arctic sediments. Mar Ecol Prog Ser 180:7–21CrossRefGoogle Scholar
  40. Lock GSH (1990) The Growth and decay of Ice. Cambridge University press, Cambridge, p 434Google Scholar
  41. Mackay JR (1972) The world of underground ice. Ann Assoc Am Geogr 62:1–22CrossRefGoogle Scholar
  42. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice core. Appl Environ Microbiol 70:202–213CrossRefPubMedGoogle Scholar
  43. Monfort P, Demers S, Levasseur M (2000) Bacterial dynamics in first year sea ice and underlying seawater of Saroma-ko lagoon (sea of Okhotsk, Japan) and Resolute passage (High Canadian arctic): inhibitory effects of ice algae on bacterial dynamics. Can J Microbiol 46:623–632CrossRefPubMedGoogle Scholar
  44. Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5:787–797CrossRefPubMedGoogle Scholar
  45. Ostroumov V (1995) A physical and chemical characterization of martian permafrost as a possible habitat for viable microorganisms. Adv Space Res 15:229–236CrossRefPubMedGoogle Scholar
  46. Ostroumov VE, Siegert C (1996) Exobiological aspects of mass transfer in microzones of permafrost deposits. Adv Space Res 18:79–86CrossRefGoogle Scholar
  47. Permafrost Subcommittee (1988) Glossary of permafrost and related ground-ice terms. Associate Committee on Geotechnical Research, National Research Council of Canada, OttawaGoogle Scholar
  48. Pikuta EV, Marsic D, Bej A, Tang J, Krader P, Hoover RB (2005) Carnobacterium pleistocenium sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska. Int J Syst Evol Microbiol 55:473–478CrossRefPubMedGoogle Scholar
  49. Pollard WH (2000) Distribution and characterization of ground ice on Fosheim Peninsula, Ellesmere Island, Nunavut. In: Garneau M, Alt BT (eds) Environmental response to climate change in the Canadian High Arctic: geological survey of Canada. Bulletin 529, pp 207–233Google Scholar
  50. Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115CrossRefPubMedGoogle Scholar
  51. Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636CrossRefPubMedGoogle Scholar
  52. Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull AT (ed) Microbial Diversity and Bioprospecting. ASM Press, Washington, pp 130–145Google Scholar
  53. Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989PubMedGoogle Scholar
  54. Rivkina E, Gilichinsky D, Wagener S, Tiedje JM, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193CrossRefGoogle Scholar
  55. Rivkina EM, Laurinavichus KS, Gilichinsky DA, Shcherbakova (2001) Methane generation in permafrost sediments. Dokl Biol Sci 383:179–181CrossRefGoogle Scholar
  56. Rivkina E, Laurinavichuis K, McGrath J, Tiedje JM, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221CrossRefPubMedGoogle Scholar
  57. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky D (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233CrossRefPubMedGoogle Scholar
  58. Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242CrossRefGoogle Scholar
  59. Shcherbakova VA, Chuvilskaya NA, Rivkina EM, Pecheritsyna SA, Laurinavichius KS, Suzina NE, Osipov GA, Lysenko AM, Gilichinsky DA, Akimenko VK (2005) Novel psychrophilic anaerobic spore-forming bacterium from the overcooled water brine in permafrost: description Clostridium algoriphilum sp. nov. Extremophiles 9:239–246CrossRefGoogle Scholar
  60. Sheridan PP, Miteva VI, Brenchley JE (2003) Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl Environ Microbiol 69:2153–2160CrossRefPubMedGoogle Scholar
  61. Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179CrossRefPubMedGoogle Scholar
  62. Skidmore ML, Foght JM, Sharp MJ (2000) Microbial life beneath a High Arctic glacier. Appl Environ Microbiol 66:3214–3220CrossRefPubMedGoogle Scholar
  63. Smith REH, Clement P (1990) Heterotrophic activity and bacterial productivity in assemblages of microbes from sea ice in the high Arctic. Polar Biol 10:351–357CrossRefGoogle Scholar
  64. Soina V, Vorobiova EA, Zvyagintsev DG, Gilichinsky DA (1995) Preservation of cell structures in permafrost: a model for exobiology. Adv Space Res 15:237–242CrossRefPubMedGoogle Scholar
  65. Soina V, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4:345–358CrossRefPubMedGoogle Scholar
  66. Steven B, Pollard W, McKay CP, Greer CW, Whyte LG (2004) Diversity of culturable bacteria isolated from permafrost and ground ice from the Canadian High Arctic. In: 10th International symposium on microbial ecologyGoogle Scholar
  67. Vainshtein MB, Gogotova GI, Hippe H (1995) A sulfate-reducing bacterium from permafrost. Microbiology 64:514–518Google Scholar
  68. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky DA, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173CrossRefPubMedGoogle Scholar
  69. Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvili A, Gilichinsky DA, Rivkina E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290CrossRefGoogle Scholar
  70. Vorobyova E, Minkovsky N, Mamukelashvili A, Zvyagintsev D, Soina V, Polanskaya L, Gilichinsky D (2001) Micro-organisms and biomarkers in permafrost. In: Paepe R, Melnikov VP (eds) Permafrost response on economic development, environmental security and natural resources. Kluwer Academic Publishers, New York, pp 527–541Google Scholar
  71. Willerslev E, Hansen AJ, Rønn R, Brand TB, Barnes I, Wiuf C, Gilichinsky D, Mitchell D, Cooper A (2004) Long-term persistence of bacterial DNA. Curr Biol 14:R9–R10CrossRefPubMedGoogle Scholar
  72. Williams PJ, Smith MW (1989) The frozen earth: fundementals of geocryology. Cambridge University Press, Cambridge, pp 306Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Blaire Steven
    • 1
  • Richard Léveillé
    • 2
  • Wayne H. Pollard
    • 3
  • Lyle G. Whyte
    • 1
  1. 1.Department of Natural Resource SciencesMcGill UniversitySte-Anne de BellevueCanada
  2. 2.Canadian Space AgencySaint-HubertCanada
  3. 3.Department of GeographyMcGill UniversityW. MontrealCanada

Personalised recommendations