Extremophiles

, Volume 11, Issue 3, pp 415–424 | Cite as

Diversity and distribution of alkaliphilic psychrotolerant bacteria in the Qinghai–Tibet Plateau permafrost region

  • Gaosen Zhang
  • Xiaojun Ma
  • Fujun Niu
  • Maoxing Dong
  • Huyuan Feng
  • Lizhe An
  • Guodong Cheng
Original Paper

Abstract

The Qinghai–Tibet Plateau represents a unique permafrost environment, being a result of high elevation caused by land uplift. And the urgency was that plateau permafrost was degrading rapidly under the current predicted climatic warming scenarios. Hence, the permafrost there was sampled to recover alkaliphilic bacteria populations. The viable bacteria on modified PYGV agar were varied between 102 and 10CFU/g of dry soil. Forty-eight strains were gained from 18 samples. Through amplified ribosomal DNA restriction analysis (ARDRA) and phylogenetic analyses, these isolates fell into three categories: high G + C gram positive bacteria (82.3%), low G + C gram positive bacteria (7.2%), and gram negative α-proteobacteria (10.5%). The strains could grow at pH values ranging from 6.5 to 10.5 with optimum pH in the range of 9–9.5. Their growth temperatures were below 37°C and the optima ranging from 10 to 15°C. All strains grew well when NaCl concentration was below 15%. These results indicate that there are populations of nonhalophilic alkaliphilic psychrotolerant bacteria within the permafrost of the Qinhai-Tibet plateau. The abilities of many of the strains to produce extracellular protease, amylase and cellulase suggest that they might be of potential value for biotechnological exploitation.

Keywords

16S rDNA Alkaliphilic psychrotolerant bacteria Qinghai–Tibet plateau Permafrost 

References

  1. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5(4):321–326PubMedCrossRefGoogle Scholar
  2. Becker FE, Volkmann CM (1961) A preliminary report on the bacteriology of permafrost in the Fairbanks area. Proc Alaskan Sci Conf 12:188Google Scholar
  3. Boyd WL, Boyd JW (1964) The presence of bacteria in permafrost of the Alaskan arctic. Can J Microbiol 10:917–919PubMedCrossRefGoogle Scholar
  4. Cameron RE, Morelli FA (1974) Viable microorganisms from ancient Ross Island and Taylor Valley drill core. Antarct J US 9:113–116Google Scholar
  5. Cheng G (1998) Glaciology and geocryology of China in the past 40 years: progress and prospect. J Glaciol Geocryol 20(3):213–226Google Scholar
  6. Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443PubMedCrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. Friedmann EI (1994) Permafrost as microbial habitat. In: Gilinchisky DA (ed) Viable microorganisms in permafrost. Institute of Soil Science and Photosynthesis, Russian Academy of Science, Pushchino pp 21–26Google Scholar
  9. Gilichinsky DA (2002) Permafrost model of extraterrestrial habitat. In Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. pp 125–142Google Scholar
  10. Gilichinsky DA, Wagener S (1995) Microbial life in permafrost: a historical review. Permafr Periglac Process 6:234–250Google Scholar
  11. Gomori G (1955) Preparation of buffers. Methods Enzymol 1:138–146CrossRefGoogle Scholar
  12. Horikoshi K (1999) Alkaliphiles: some application of their products fro biotechnology. Microbiol Mol Biol Rev 63(4):735–750PubMedGoogle Scholar
  13. Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2:185–190PubMedCrossRefGoogle Scholar
  14. James N, Sutherland ML (1942) Are there living bacteria in permanently frozen subsoil? Can J Res Sect C Bot Sci 20(6):228–235Google Scholar
  15. Jones EB, Grant WD, Collins NC, Mwatha WE (1994) Alkaliphiles: diversity and identification. In: Priest et al (eds) Bacterial diversity and systematics, Plenum, New York, pp 195–230Google Scholar
  16. Jones EB, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedCrossRefGoogle Scholar
  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules, In: Munro (ed) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  18. Junge K, Gosink JJ, Hoppe HG, Staley JT (1998) Arthrobacter, Brachybacterium and Planococcus isolates identified from antarctic sea ice brine. Description of Planococcus mcmeekinii, sp. nov. Syst Appl Microbiol 21(2):306–314PubMedGoogle Scholar
  19. Khlebnikova GM, Gilichinsky DA, Fedorov-Davydov DC, Vorobyova EA (1990) Quantitative evaluation of microorganisms in permafrost deposits and buried soils. Microbiology 59:106–112Google Scholar
  20. Khmelenina VN, Makutina VA, Kalyuzhnaya MG, Rivkina EM, Gilichinsky DA, Trotsenko Y (2002) Discovery of viable methanotrophic bacteria in permafrost sediments of northeast Siberia. Dokl Biol Sci 384:235–237PubMedCrossRefGoogle Scholar
  21. Krulwich TA (2000) Alkaliphilic prokaryotes. In: Dworkin et al (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 2nd ed. Springer, BerlinGoogle Scholar
  22. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 12:1244–1245CrossRefGoogle Scholar
  23. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–148Google Scholar
  24. Li X, Cheng GD (1999) A GIS aided response model of high altitude permafrost to global change. Sci China Ser D 42(1):72–79CrossRefGoogle Scholar
  25. Lydolph MC, Jacobsen J, Arctander P, Gilbert MT, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl Environ Microbiol 71(2):1012–1017PubMedCrossRefGoogle Scholar
  26. Manafi M, Kneifel W (1990) Rapid methods for differentiating gram-positive from gram-negative aerobic and facultative anaerobic bacteria. J Appl Bacteriol 69:822–827PubMedGoogle Scholar
  27. Michaud L, Di-Cello F, Brilli M, Fani R, Lo-Giudice A, Bruni V (2004) Biodiversity of cultivable psychrotrophic marine bacteria isolated from Terra Nova Bay. FEMS Microbiol Lett 230(1):63–71PubMedCrossRefGoogle Scholar
  28. Muller S (1943) Permafrost or permanently frozen ground and related engineering problems. Strategic Studies, 62. United States Army, Office Chief of Engineers, Military Intelligence Div. Strategic Eng. Study 62, pp 231Google Scholar
  29. Niu F, Cheng G, Ni W, Jin D (2005) Engineering-related slope failure in permafrost regions of the Qinghai–Tibet Plateau. Cold Reg Sci Technol 42(3):215–225CrossRefGoogle Scholar
  30. Omelyansky VL (1911) Bakteriologicheskoe issledovanie Sanga mamonta Prilegayushchei pochvy Bacteriological investigation of the Sanga mammoth and surrounding soil. Arkhiv Biologicheskikh Nauk 16:335–340Google Scholar
  31. Reddy GS, Prakash JS, Vairamani M, Prabhakar S, Matsumoto GI, Shivaji S (2002) Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6(3):253–261PubMedCrossRefGoogle Scholar
  32. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33(8):1215–1221PubMedCrossRefGoogle Scholar
  33. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66(8):3230–3233PubMedCrossRefGoogle Scholar
  34. Rothschild LJ, Mancinelli L (2001) Life in extreme environments. Nature 409:1092–1101PubMedCrossRefGoogle Scholar
  35. Ruger HJ, Fritze D, Sproer C (2000) New psychrophilic and psychrotolerant Bacillus marinus strains from tropical and polar deep-sea sediments and emended description of the species. Int J Syst Evol Microbiol 50:1305–1313PubMedGoogle Scholar
  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  37. Sambrook J, Frisch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  38. Sánchez-Porro C, Martín S, Mellado E, Ventosa A (2003) Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94(2):295–300PubMedCrossRefGoogle Scholar
  39. Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33(3):169–179PubMedCrossRefGoogle Scholar
  40. Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4(3):345–358PubMedCrossRefGoogle Scholar
  41. Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J. Bacteriol 95:1921–1942PubMedGoogle Scholar
  42. Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions and in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777–780PubMedGoogle Scholar
  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  44. Tiago I, Chung AP, Verissimo (2004) A Bacterial diversity in a nonsaline alkaline environment: heterotrophic aerobic populations. Appl Environ Microbiol 70(12):7378–7387PubMedCrossRefGoogle Scholar
  45. Tiedje JM, Smith GB, Simkins S, Holben WE, Finney C, Gilichinsky DA (1994) Recovery of DNA, denitrifiers and patterns of antibiotic sensitivity in microorganisms from ancient permafrost soils of Eastern Siberia. In: Gilichinsky D (ed) Viable microorganisms in Permafrost. Russian Academy of Sciences, Pushchino, pp 83–98Google Scholar
  46. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4(3):165–173PubMedCrossRefGoogle Scholar
  47. Vorobyova E, Soina V, Gorlenko M, Minkovskaya N, Zalinova N, Mamukelashvih A, Gilichinsky D, Rivkma E, Vishnivetskaya T (1997) The deep cold biosphere: facts and hypothesis. FEMS Microbiol Rev 20:277–290CrossRefGoogle Scholar
  48. Wang B, French HM (1995) Permafrost on the Tibet Plateau, China. Quat Sci Rev 14(3):255–274CrossRefGoogle Scholar
  49. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MT, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animalgenetic records from Holocene and Pleistocene sediments. Science 300:791–795PubMedCrossRefGoogle Scholar
  50. Williams PJ, Smith MW (1989) The frozen earth: fundamentals of geocryology. Cambridge University Press, Cambridge, pp. 306Google Scholar
  51. Wu Q, Liu Y (2004) Ground temperature monitoring and its recent change in Qinghai–Tibet Plateau. Cold Reg Sci Technol 38:85–92CrossRefGoogle Scholar
  52. Zhu Y, Chen FH, Madsen D (2001) Early-holocene lake pollen record and environmental implication in Shiyanghe River drainage, arid region of China. Chin Sci Bull 46(19):1596–1602Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Gaosen Zhang
    • 1
  • Xiaojun Ma
    • 1
  • Fujun Niu
    • 2
  • Maoxing Dong
    • 1
  • Huyuan Feng
    • 1
    • 2
  • Lizhe An
    • 1
    • 2
  • Guodong Cheng
    • 2
  1. 1.School of Life Sciences, Key Lab of Arid and Grassland Agrioecology of MOELanzhou UniversityLanzhouChina
  2. 2.Cold and Arid Regions Environmental and Engineering Research Institute, CASLanzhouChina

Personalised recommendations