, Volume 11, Issue 2, pp 363–370 | Cite as

Desulfurispirillum alkaliphilum gen. nov. sp. nov., a novel obligately anaerobic sulfur- and dissimilatory nitrate-reducing bacterium from a full-scale sulfide-removing bioreactor

  • D. Yu. SorokinEmail author
  • M. Foti
  • B. J. Tindall
  • G. Muyzer
Original Paper


Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SR= DSM 18275 = UNIQEM U250).


Desulfurispirillum alkaliphilum Sulfur-reducing Dissimilatory nitrate-reducing Haloalkaliphilic 



This work was supported by NWO-RFBR (47.011.2004.010), STW (WBC 5939), Program of the Russian Academy of Sciences “Molecular and Cell Biology” and RFBR (04-04-48647). We are grateful to P. Luimes for providing samples from the Thiopaq bioreactor.


  1. Bokranz M, Katz J, Schröder I, Roberton AM, Kröger A (1983) Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135:36–41CrossRefGoogle Scholar
  2. Buisman CJN (1989) Biotechnological sulfide removal with oxygen. Ph.D. Thesis, Wageningen University, pp 97–107Google Scholar
  3. Buisman C, Geraats P, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56CrossRefPubMedGoogle Scholar
  4. Eisenmann E, Beuerle J, Sulger K, Kroneck PMH, Schumacher W (1995) Lithotrophic growth of Sulfurospirillum deleyianum with sulfide as electron donor coupled to respiratory reduction of nitrate to ammonia. Arch Microbiol 164:180–185Google Scholar
  5. Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208-214CrossRefGoogle Scholar
  6. Janssen AJH, Meijer S, Bontsema J, Lettinga G (1998) Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotechnol Bioeng 60:147–155PubMedCrossRefGoogle Scholar
  7. Janssen AJH, de Keizer A, van Aelst A, Fokkink R, Yangling H, Lettinga G (1996) Surface characteristics and aggregation of microbiologically produced sulphur particles. Colloids surf B Biointerfaces 6:115–129CrossRefGoogle Scholar
  8. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200PubMedCrossRefGoogle Scholar
  9. Klimmek O, Kröger A, Steudel R, Holdt G (1991) Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport. Arch Microbiol 155:187–192CrossRefGoogle Scholar
  10. Krafft T, Gross R, Kröger A (1995) The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur J Biochem 230:601–606PubMedCrossRefGoogle Scholar
  11. Labrenz M, Lawson PA, Tindall BJ, Collins MD, Hirsch P (2005) Roseisalinus antarcticus gen. nov., sp. nov., a novel aerobic bacteriochlorophyll a-producing alpha-proteobacterium isolated from hypersaline Ekho Lake, Antarctica. Int J Syst Evol Microbiol 55:41–47PubMedCrossRefGoogle Scholar
  12. Ludwig W Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckman N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer K-H (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371CrossRefGoogle Scholar
  13. Macy JM, Nunan K, Hagen K, Dixon DR, Harbour PJ, Cahill M, Sly LI (1996) Chrysiogenes arsenatis gen. nov., sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 46:1153–1157PubMedGoogle Scholar
  14. Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150CrossRefGoogle Scholar
  15. Pfennig N, Lippert KD (1966) Über das Vitamin B12—bedürfnis phototropher Schwefel bacterien. Arch Microbiol 55:245–256Google Scholar
  16. Schumacher W, Kroneck PMH, Pfennig N (1992) Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158:287–293CrossRefGoogle Scholar
  17. Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Rev 26:285–309CrossRefGoogle Scholar
  18. Sorokin DY, Kuenen JG (2005) Alkaliphilic chemolithotrophs from sodas lakes. FEMS Microbiol Ecol 52:287–295PubMedCrossRefGoogle Scholar
  19. Sorokin DYu, Kuenen JG, Jetten M (2001) Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio denitrificans. Arch Microbiol 175:94–101CrossRefGoogle Scholar
  20. Sorokin DY, Tourova TP, Antipov AN, Muyzer G, Kuenen JG (2004) Anaerobic growth of the haloalkaliphilic denitrifying sulphur-oxidising bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150:2435–2442PubMedCrossRefGoogle Scholar
  21. Strömpl C, Tindall BJ, Jarvis GN, Lünsdorf N, Moore ERB, Hippe H (1999) A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of A. glycerini as Anaerosinus glycerini gen. nov., comb. nov., and A. burkinabensis as Anaeroarcus burkinabensis gen. nov., comb. nov. Int J Syst Bacteriol 49:1861–1872PubMedCrossRefGoogle Scholar
  22. Tindall BJ (1990a) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199-202CrossRefGoogle Scholar
  23. Tindall BJ (1990b A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130Google Scholar
  24. Tindall BJ (1996) Respiratory lipoquinones as biomarkers. In: Akkermans A, de Bruijn F, van Elsas D (eds) Molecular microbial ecology manual, Sect 4.1.5, Suppl 1. Kluwer, DordrechtGoogle Scholar
  25. Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Mikrobiology (Moscow, English Translation) 68:503–521Google Scholar
  26. Zhang G, Dong H, Xu X, Zhao D, Zhang C (2005) Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling project in China. Appl Environ Microbiol 71:3213–3227PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. Yu. Sorokin
    • 1
    • 2
    Email author
  • M. Foti
    • 2
  • B. J. Tindall
    • 3
  • G. Muyzer
    • 2
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Environmental Biotechnology Group, Department of BiotechnologyDelft University of Technology2628 BC DelftThe Netherlands
  3. 3.DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweigGermany

Personalised recommendations