Extremophiles

, Volume 11, Issue 1, pp 203–210

Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats

  • S. Leuko
  • F. Goh
  • M. A. Allen
  • B. P. Burns
  • M. R. Walter
  • B. A. Neilan
Method Paper

Abstract

Hamelin Pool in Western Australia is one of the two major sites in the world with active marine stromatolite formation. Surrounded by living smooth and pustular mats, these ancient laminated structures are associated with cyanobacterial communities. Recent studies have identified a wide diversity of bacteria and archaea in this habitat. By understanding and evaluating the microbial diversity of this environment we can obtain insights into the formation of early life on Earth, as stromatolites have been dated in the geological record as far back as 3.5 billion years. Automated ribosomal intergenic spacer analysis (ARISA) patterns were shown to be a useful method to genetically discriminate halophilic archaea within this environment. Patterns of known halophilic archaea are consistent, by replicate analysis, and the halophilic strains isolated from stromatolites have novel intergenic spacer profiles. ARISA–PCR, performed directly on extracted DNA from different sample sites, provided significant insights into the extent of previous unknown diversity of halophilic archaea within this environment. Cloning and sequence analysis of the spacer regions obtained from stromatolites confirmed the novel and broad diversity of halophilic archaea in this environment.

Keywords

Shark Bay Stromatolites Intergenic spacer region Diversity Hypersaline environment ARISA 

References

  1. Acinas SG, Antón J, Rodríguez-Valera F (1999) Diversity of free-living and attached bacteria in offshore western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522PubMedGoogle Scholar
  2. Amann G, Stetter KO, Llobet-Brossa E, Amann R, Antón J (2000) Direct proof for the presence and expression of two 5% different 16S rRNA genes in individual cells of Haloarcula marismortui. Extremophiles 4:373–376PubMedCrossRefGoogle Scholar
  3. Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in phanerozoic oceans. Science 292:1701–1704PubMedCrossRefGoogle Scholar
  4. Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19PubMedGoogle Scholar
  5. Boucher Y, Douady CJ, Sharma AK, Kamekura M, Doolittle WF (2004) Intragenomic heterogeneity and intergenomic recombination among haloarchaeal rRNA genes. J Bacteriol 186:3980–3990PubMedCrossRefGoogle Scholar
  6. Briones C, Amils R (2000) Nucleotide sequence of the 23s rRNA from Haloferax mediterranei and phylogenetic analysis of halophilic archaea based on LSU rRNA. Syst Appl Microbiol 23:124–131PubMedGoogle Scholar
  7. Burns BP, Goh F, Allen MA, Neilan BA (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101PubMedCrossRefGoogle Scholar
  8. Cardinale M, Brusetti L, Quatrini P, Borin S, Puglia AM, Rizzi A, Zanardini E, Sorlini C, Corselli C, Daffonchio D (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147–6156PubMedCrossRefGoogle Scholar
  9. DasSarma S, Fleischmann EM, Rodríguez-Valera F (1995) Halophiles. In: Robb FT (ed) Archaea: a laboratory manual. CSHL Press, Cold Spring Harbor, pp 225–230Google Scholar
  10. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689PubMedCrossRefGoogle Scholar
  11. Dennis PP, Ziesche S, Mylvaganam S (1998) Transcription analysis of two disparate rRNA operons in the halophilic Archaeon Haloarcula marismortui. J Bacteriol 180:4804–4813PubMedGoogle Scholar
  12. Elshahed MS, Najar FZ, Roe BA, Oren A, Dewers TA, Krumholz LR (2004) Survey of archaeal diversity reveals an abundance of halophilic archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70:2230–2239PubMedCrossRefGoogle Scholar
  13. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636PubMedGoogle Scholar
  14. García-Martínez J, Rodríguez-Valera F (2000) Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of group I. Mol Ecol 9:935–948PubMedCrossRefGoogle Scholar
  15. García-Martínez J, Bescós I, Rodríguez-Sala J, Rodríguez-Valera (2001) RISSC: a novel database for ribosomal 16S-23S RNA genes spacer regions. Nucleic Acid Res 29:178–180PubMedCrossRefGoogle Scholar
  16. Goh F, Leuko S, Allen MA, Bowman JP, Kamekura M, Neilan BA, Burns BP (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst 56:1323–1329Google Scholar
  17. González N, Romero J, Espejo RT (2003) Comprehensive detection of bacterial populations by PCR amplification of the 16S–23S rRNA spacer region. J Microbiol Meth 55:91–97CrossRefGoogle Scholar
  18. Grant WD, Gemmell RT, McGenity TJ (1998) Halobacteria: the evidence for longevity. Extremophiles 2:279–287PubMedCrossRefGoogle Scholar
  19. Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodríguez-Valera F (ed) Halophilic bacteria, vol I. CRC Press, Boca Raton, pp 109–140Google Scholar
  20. Leuko S, Weidler G, Radax C, Legat A, Koemle NI, Kargl G, Stan-Lotter H (2002) Examining the physico-chemical resistance of halobacteria with the LIFE-DEAD kit, following exposure to simulated Martian atmospheric conditions and heat. ESA Special Publication (ESA-SP-518)Google Scholar
  21. Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359PubMedCrossRefGoogle Scholar
  22. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2:243–250PubMedCrossRefGoogle Scholar
  23. Monty C (1977) Evolving concepts on the nature and the ecological significance of stromatolites. In: Flügel E (ed) Fossil algae, recent results and developments. Springer, Berlin Heidelberg New York, pp 15–35Google Scholar
  24. Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusion. Environ Microbiol 5(11):1094–1102PubMedCrossRefGoogle Scholar
  25. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonksi PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KH, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S (2000) Genome sequence of Halobacterium species NRC-1. PNAS 97:12176–12181PubMedCrossRefGoogle Scholar
  26. Oren A (2001) The order Halobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrand E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed., release 3.2, 25 July 2001. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45:747–754PubMedCrossRefGoogle Scholar
  28. Øvreås L, Daae FL, Torsvik V, Rodríguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301PubMedCrossRefGoogle Scholar
  29. Palmisano AC, Summons RE, Cronin SE, Des Marias DJ (1989) Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin pool, Shark Bay, Western Australia. J Phycol 25:655–661PubMedCrossRefGoogle Scholar
  30. Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832PubMedCrossRefGoogle Scholar
  31. Petrisor AI, Decho AW (2004) Using geographical information techniques to quantify the spatial structure of endolithic boring processes within sediment grains of marine stromatolites. J Micro Meth 56:173–180CrossRefGoogle Scholar
  32. Polz MF, Cavanaugh CM (1998) Bias in template to product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730PubMedGoogle Scholar
  33. Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN Embley TM (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595PubMedCrossRefGoogle Scholar
  34. Radax C, Gruber C, Stan-Lotter H (2001) Novel haloarchaeal 16S rRNA gene sequences from alpine Permo–Triassic rock salt. Extremophiles 5:221–228PubMedCrossRefGoogle Scholar
  35. Ranjard L, Brothier E, Nazaret S (2000) Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl Environ Microbiol 66:5334–5339PubMedCrossRefGoogle Scholar
  36. Reid RP, James NP, Macintyre IG, Dupraz CP, Burne RV (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324Google Scholar
  37. Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1979) Isolation of extreme halophiles from Seawater. Appl Environ Microbiol 38:164–165PubMedGoogle Scholar
  38. Stan-Lotter H, Pfaffenhuemer M, Legat A, Busse HJ, Gruber C (2002) Halococcus dombrowskii sp. nov., an archaeal isolate from a Permian alpine salt deposit. Int J Syst Evol Microbiol 52:1807–1814PubMedCrossRefGoogle Scholar
  39. Tillett D, Neilan BA (2000) Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. J Phycol 36:251–258CrossRefGoogle Scholar
  40. Wilson K (1990) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.4.1–2.4.2Google Scholar
  41. von Wintzingerode F, Goebel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  42. Yannarell AC, Triplett EW (2005) Geographic and environmental sources of variation in lake bacterial community composition. Appl Environ Microbiol 71:227–239PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. Leuko
    • 1
  • F. Goh
    • 2
  • M. A. Allen
    • 2
  • B. P. Burns
    • 1
    • 2
  • M. R. Walter
    • 1
  • B. A. Neilan
    • 1
    • 2
  1. 1.Australian Centre for Astrobiology, Biotechnology Research InstituteMacquarie UniversitySydneyAustralia
  2. 2.School of Biotechnology and Biomolecular ScienceUniversity of New South WalesSydneyAustralia

Personalised recommendations