, Volume 11, Issue 1, pp 145–157 | Cite as

Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov.

  • T. Sokolova
  • J. Hanel
  • R. U. Onyenwoke
  • A.-L. Reysenbach
  • A. Banta
  • R. Geyer
  • J. M. González
  • W. B. Whitman
  • J. WiegelEmail author
Original Paper


Three thermophilic strains of chemolithoautotrophic Fe(III)-reducers were isolated from mixed sediment and water samples (JW/KA-1 and JW/KA-2T: Calcite Spring, Yellowstone N.P., WY, USA; JW/JH-Fiji-2: Savusavu, Vanu Levu, Fiji). All were Gram stain positive rods (∼0.5 × 1.8 μm). Cells occurred singly or in V-shaped pairs, and they formed long chains in complex media. All utilized H2 to reduce amorphous iron (III) oxide/hydroxide to magnetite at temperatures from 50 to 75°C (opt. ∼73°C). Growth occurred within the pH60C range of 6.5–8.5 (opt. pH60C 7.1–7.3). Magnetite production by resting cells occurred at pH60C 5.5–10.3 (opt. 7.3). The iron (III) reduction rate was 1.3 μmol Fe(II) produced × h-1 × ml−1 in a culture with 3 × 107 cells, one of the highest rates reported. In the presence or absence of H2, JW/KA-2T did not utilize CO. The G + C content of the genomic DNA of the type strain is 52.7 ± 0.3 mol%. Strains JW/KA-1 and JW/KA-2T each contain two different 16S rRNA gene sequences. The 16S rRNA gene sequences from JW/KA-1, JW/KA-2T, or JW/JH-Fiji-2 possessed >99% similarity to each other but also 99% similarity to the 16S rRNA gene sequence from the anaerobic, thermophilic, hydrogenogenic CO-oxidizing bacterium ‘Carboxydothermus restrictus’ R1. DNA–DNA hybridization between strain JW/KA-2T and strain R1T yielded 35% similarity. Physiological characteristics and the 16S rRNA gene sequence analysis indicated that the strains represent two novel species and are placed into the novel genus Thermolithobacter within the phylum ‘Firmicutes’. In addition, the levels of 16S rRNA gene sequence similarity between the lineage containing the Thermolithobacter and well-established members of the three existing classes of the ‘Firmicutes’ is less than 85%. Therefore, Thermolithobacter is proposed to constitute the first genus within a novel class of the ‘Firmicutes’, Thermolithobacteria. The Fe(III)-reducing Thermolithobacter ferrireducens gen. nov., sp. nov. is designated as the type species with strain JW/KA-2T (ATCC 700985T, DSM 13639T) as its type strain. Strain R1T is the type strain for the hydrogenogenic, CO-oxidizing Thermolithobacter carboxydivorans sp. nov. (DSM 7242T, VKM 2359T).


Dissimilatory Fe(III) reduction CO-metabolism Thermophilic anaerobes Chemolithoautotroph Ferribacter thermautotrophicus Carboxydothermus restrictus Thermolithobacter ferrireducens Thermolithobacter carboxydivorans 



We would like to thank Kaya Aygen for his assistance during the purification of strain JW/KA-2T and Dr. Dorothy Byrer for the electron micrographs. We are grateful to Dr. Christopher Romanek and Robert Thomas for performing the X-ray diffraction analyses. We thank J.P. Euzeby for valuable assistance in using proper nomenclature. JMG acknowledges support from a Ramon y Cajal program and project REN2002–00041 both from the Spanish Ministry of Education and Science. This work was partly supported by Programms of Russian Academy of Sciences “Molecular and cell biology,” “Biosphere and evolution” and in its later stage by an NSF-MCB 0238407 grant.


  1. Amann G, Stetter KO, Llobet-Brossa E, Amann R, Anton J (2000) Direct proof for the presence and expression of two 5% different 16S rRNA genes in individual cells of Haloarcula marismortui. Extremophiles 4:373–376PubMedCrossRefGoogle Scholar
  2. Balashova VV, Zavarzin GA (1980) Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48:635–639Google Scholar
  3. Balkwill DL, Kieft TL, Tsukuda T, Kostandarithes HM, Onstott TC, Macnaughton S, Bownas J, Fredrickson JK (2004) Identification of iron-reducing Thermus strains as Thermus scotoductus. Extremophiles 8:37–44PubMedCrossRefGoogle Scholar
  4. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917PubMedGoogle Scholar
  5. Boone DR, Liu Y, Zhao Z, Balkwill D, Drake G, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448PubMedGoogle Scholar
  6. Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339PubMedCrossRefGoogle Scholar
  7. Cashion P, Hodler-Franklin MA, McCully J, Franklin M (1977) A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466PubMedCrossRefGoogle Scholar
  8. Cox, M (1981) Preliminary geothermal investigation in the Lambasa area,Vanna Levu, Ministry of Lands and Mineral Resources Department, Geothermal Report Number 2, Supplementary sheet number 1, Fiji Government Printing Department, FijiGoogle Scholar
  9. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142PubMedCrossRefGoogle Scholar
  10. Garrity GM, Johnson KL, Bell J, Searles DB (2002) Taxonomic outline of the Procaryotes. In: Bergey’s manual of systematic bacteriology, 2nd edn, release 3.0 New York: Springer, Berlin Heidelberg New York, pp 1–366. DOI: 10.1007/bergeysoutline200210Google Scholar
  11. Gaspard S, Vazquez F, Holliger C (1998) Localization and solubilization of the iron (III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol 64:3188–3194PubMedGoogle Scholar
  12. Geyer R, Peacock AD, White DC, Lytle C, Van Berkel GJ (2004) Atmospheric pressure chemical ionization and atmospheric pressure photoionization for simultaneous mass spectrometric analysis of microbial respiratory ubiquinones and menaquinones. J Mass Spectrom 39: 922–929PubMedCrossRefGoogle Scholar
  13. Geyer R, Peacock AD, Miltner A, Richnow HH, White DC, Kästner M (2005) In situ assessment of microbial activity using microcosms loaded with 13C-labelled benzene or toluene. Environ Sci Technol 39:4983–4989PubMedCrossRefGoogle Scholar
  14. Gibbons NE, Murray RGE (1978) Proposals concerning the higher taxa of the bacteria. Int J Syst Bacteriol 28:1–6Google Scholar
  15. Götz D, Banta A, Beveridge TJ, Rushdi AI, Simoneit BRT, Reysenbach A-L (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359PubMedCrossRefGoogle Scholar
  16. Greene AC, Patel BKC, Sheehy A (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509PubMedGoogle Scholar
  17. Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049PubMedCrossRefGoogle Scholar
  18. Guckert JB, Antworth CP, Nichols PD, White DC (1985) Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol 31:147–158Google Scholar
  19. Henstra AM, Stams AJM (2004) Novel physiological features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens. Appl Environ Microbiol 70:7236–7240PubMedCrossRefGoogle Scholar
  20. Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333CrossRefGoogle Scholar
  21. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridization from renaturation rate. Syst Appl Microbiol 4:184–192Google Scholar
  22. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (eds) Mammalian protein metabolism. Academic, New York, pp 21–132Google Scholar
  23. Kashefi K, Lovley D (2000) Reduction of Fe(III), Mn(IV), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Env Microbiol 66:1050–1056CrossRefGoogle Scholar
  24. Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach AL, Lovley DR (2002a) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728CrossRefGoogle Scholar
  25. Kashefi K, Holmes DE, Reysenbach AL, Lovley DR (2002b) Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68:1735–1742CrossRefGoogle Scholar
  26. Kashefi K, Holmes DE, Baross JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69:2985–2993PubMedCrossRefGoogle Scholar
  27. Kostka J, Nealson K (1998) Isolation, cultivation and characterization of iron- and manganese-reducing bacteria. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford, New York, pp 58–78Google Scholar
  28. Lonergan DJ, Jentre HL, Coates JD, Phillips EJP, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408PubMedGoogle Scholar
  29. Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287PubMedGoogle Scholar
  30. Ljungdahl LG, Wiegel J (1986) Working with anaerobic bacteria. In: Demain AL, Solomon NA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC, pp 84–94Google Scholar
  31. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüßmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucl Acids Res 32:1363–1371PubMedCrossRefGoogle Scholar
  32. Marmur J (1961) A procedure for the isolation of desoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218CrossRefGoogle Scholar
  33. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118PubMedCrossRefGoogle Scholar
  34. McGeary D, Plummer C (eds) (1997) Physical geology: Earth revealed. WCW McGraw-Hill, New YorkGoogle Scholar
  35. McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XD, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930PubMedCrossRefGoogle Scholar
  36. Menon S, Ragsdale SW (1996) Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase. Biochemistry 35:15814–15821PubMedCrossRefGoogle Scholar
  37. Mesbah M, Premachandran U, Whitman W (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167Google Scholar
  38. Olsen G, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. CABIOS 10:41–48PubMedGoogle Scholar
  39. Onyenwoke RU, Lee Y-J, Dabrowski S, Ahring B, Wiegel J (2006) Reclassification of Thermoanaerobium acetigenum X6BT as Caldicellulosiruptor acetigenus X6BT comb. nov. and emendation of the genus description. Int J Syst Evol Microbiol 56:1391–1395PubMedCrossRefGoogle Scholar
  40. Peteranderl R, Shotts EB, Wiegel J (1990) Stability of antibiotics under growth conditions for thermophilic anaerobes. Appl Environ Microbiol 56:1981–1983PubMedGoogle Scholar
  41. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  42. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691PubMedCrossRefGoogle Scholar
  43. Slobodkin AI, Wiegel J (1997) Fe(III) as an electron acceptor for hydrogen oxidation in thermophilic anaerobic enrichment cultures from geothermal areas. Extremophiles 1:106–109PubMedCrossRefGoogle Scholar
  44. Slobodkin A, Reysenbach AL, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(II)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547PubMedCrossRefGoogle Scholar
  45. Slobodkin AI, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyth NA, Bonch-Osmolovskaya EA (1999) Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478PubMedGoogle Scholar
  46. Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149PubMedGoogle Scholar
  47. Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Kolganova TV, Bonch-Osmolovskaya E.A (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic CO-utilizing thermophile from Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967PubMedCrossRefGoogle Scholar
  48. Sokolova TG, Gonzalez JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004a) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359CrossRefGoogle Scholar
  49. Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004b) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323CrossRefGoogle Scholar
  50. Sokolova TG, Kostrikina NA, Chernyh NA, Kolganova TV, Tourova TP, Bonch-Osmolovskaya EA (2005) Thermincola carboxydiphila gen. nov., sp. nov., a new anaerobic carboxydotrophic hydrogenogenic bacterium from a hot spring of Lake Baikal area. Int J Syst Evol Microbiol 55: 2069–2073PubMedCrossRefGoogle Scholar
  51. Svetlichnyi VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260Google Scholar
  52. Svetlichnyi VA, Sokolova TG, Kostrikina NA, Lysenko AM (1994) A new thermophilic anaerobic carboxydotrophic bacterium Carboxydothermus restrictus sp. nov. Microbiology (English translation of Mikrobiologiya) 63:294–297Google Scholar
  53. Svetlitchnyi VA, Peschel C, Acker G, Meyer O (2001) Two membrane associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon monoxide utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144PubMedCrossRefGoogle Scholar
  54. Valentine RC, Shapiro BM, Stadman ER (1968) Regulation of glutamine synthetase XII electron microscopy of the enzyme from E. coli. Biochemistry 7:2143–2152PubMedCrossRefGoogle Scholar
  55. Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67PubMedCrossRefGoogle Scholar
  56. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach A-L (1999) Population structure and phylogenetic characterization of marine benthic Archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384PubMedGoogle Scholar
  57. White DC, Geyer R, Peacock AD, Hedrick DB, Koenigsberg SS, Sung Y, He J, Loffler FE (2005) Phospholipid furan fatty acids and ubiquinone-8: lipid biomarkers that may protect Dehalococcoides strains from free radicals. Appl Environ Microbiol 71:8426–8433PubMedCrossRefGoogle Scholar
  58. Wiegel J (1981) Distinction between the gram reaction and the gram type of bacteria. Int J Syst Bacteriol 31:88Google Scholar
  59. Wiegel J (1998) Anaerobic alkalithermphiles, a novel group of extremophiles. Extremophiles 2:257–267PubMedCrossRefGoogle Scholar
  60. Wiegel J, Hanel J, Aygen K (2003) Chemolithoautotrophic thermophilic iron (III)-reducer. In: Ljungdahl LG, Adams MW, Barton LL, Ferry JG, Johnson MK(ed) Biochemistry and physiology of anaerobic bacteria. Springer, Berlin Heidelberg New YorkGoogle Scholar
  61. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • T. Sokolova
    • 1
  • J. Hanel
    • 2
  • R. U. Onyenwoke
    • 2
  • A.-L. Reysenbach
    • 3
  • A. Banta
    • 3
  • R. Geyer
    • 4
  • J. M. González
    • 5
  • W. B. Whitman
    • 2
  • J. Wiegel
    • 2
    Email author
  1. 1.Winogradsky Institute of MicrobiologyRussian Academy of SciencesMoscowRussia
  2. 2.Department of MicrobiologyThe University of GeorgiaAthensUSA
  3. 3.Department of BiologyPortland State UniversityPortlandUSA
  4. 4.Environmental MicrobiologyUFZ Centre for Environmental Research Leipzig-HalleLeipzigGermany
  5. 5.Instituto de Recursos Naturales y AgrobiologiaCSICSevillaSpain

Personalised recommendations