, Volume 10, Issue 5, pp 357–362 | Cite as

History of discovery of the first hyperthermophiles



Hyperthermophiles, growing optimally at 80°C and above had been discovered in 1981. They represent the upper temperature border of life and are found within high temperature environments. In their basically anaerobic surroundings, they gain energy mainly by inorganic redox reactions. Within the phylogenetic tree, hyperthermophiles occupy all the short deep branches closest to the root. The earliest archaeal phylogenetic lineage is represented by the extremely tiny members of the novel kingdom of Nanoarchaeota.


Hyperthermophiles Archaea Phylogeny Cultivation 


  1. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520PubMedCrossRefGoogle Scholar
  2. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21PubMedCrossRefGoogle Scholar
  3. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulphur oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  5. Castenholz RW (1979) Evolution and ecology of thermophilic microorganisms. In: Shilo M (eds) Strategies of microbial life in extreme environments. Verlag Chemie, Weinheim pp 373–392Google Scholar
  6. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351Google Scholar
  7. Huber R, Burggraf S, Mayer T, Barns SM, Rossnagel P, Stetter KO (1995) Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis. Nature 376:57–58PubMedCrossRefGoogle Scholar
  8. Huber R, Eder W, Heldwein S, Wanner G, Huber H, Rachel R, Stetter KO (1998) Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park application. Environ Microbiol 64:3576–3583Google Scholar
  9. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67PubMedCrossRefGoogle Scholar
  10. Stetter KO (1982) Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105°C. Nature 300:258–260CrossRefGoogle Scholar
  11. Stetter KO (1992) Life at the upper temperature border. In: Tran Thanh Van J, Tran Thanh Van K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontieres, Gif-sur-Yvette pp 195–219Google Scholar
  12. Stetter KO (2005) Volcanoes, hydrothermal venting, and the origin of life. In: Marti J, Ernst GGJ (eds) Volcanoes and the environment. Cambridge University Press, Cambridge pp 175–206Google Scholar
  13. Stetter KO, Thomm M, Winter J, Wildgruber G, Huber H, Zillig W, Janecovic D, König H, Palm P, Wunderl S (1981) Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring. Zbl. Bakt Hyg I Abt Orig C2:166–178Google Scholar
  14. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745CrossRefGoogle Scholar
  15. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton GG, Simon M, Söll D, Stetter KO, Short JM, Noordewier M (2003) The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci USA 100:12984–12988PubMedCrossRefGoogle Scholar
  16. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedCrossRefGoogle Scholar
  17. Zillig W, Stetter KO, Janekovic D (1979) DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 96:597–604PubMedCrossRefGoogle Scholar
  18. Zillig W, Stetter KO, Schäfer W, Janekovic D, Wunderl S, Holz I, Palm P (1981) Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras. Zbl Bakt Hyg I Abt Orig C2:205–227Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.University of RegensburgRegensburgGermany

Personalised recommendations