Extremophiles

, Volume 10, Issue 1, pp 17–28

Plasmids and viruses of the thermoacidophilic crenarchaeote Sulfolobus

Review

Abstract

The crenarchaeote Sulfolobus spp. is a host for a remarkably large spectrum of viruses and plasmids. The genetic elements characterized so far indicate a large degree of novelty in terms of morphology (viruses) and in terms of genome content (plasmids and viruses). The viruses and conjugative plasmids encode a great number of conserved proteins of unknown function due to the lack of sequence similarity to functionally characterized proteins. These apparently essential proteins remain to be studied and should help to understand the physiology and genetics of the respective genetic elements as well as the host. Sulfolobus is one of the best-studied archaeons and could develop into an important model organism of the crenarchaea and the archaea.

Key words

Plasmid Sulfolobus pRN1 pNOB8 SIRV2 SIFV 

References

  1. Aagaard C, Dalgaard JZ, Garrett RA (1995) Intercellular mobility and homing of an archaeal rDNA intron confers a selective advantage over intron-cells of Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 92:12285–12289PubMedGoogle Scholar
  2. Aravalli RN, Garrett RA (1997) Shuttle vectors for hyperthermophilic archaea. Extremophiles 1:183–191CrossRefPubMedGoogle Scholar
  3. Arnold HP, She Q, Phan H, Stedman K, Prangishvili D, Holz I, Kristjansson JK, Garrett R, Zillig W (1999) The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol Microbiol 34:217–226CrossRefPubMedGoogle Scholar
  4. Arnold HP, Ziese U, Zillig W (2000a) SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272:409–416CrossRefGoogle Scholar
  5. Arnold HP, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Weidmann JF, Kristjanson JK, Klenk HP, Nelson KE, Fraser CM (2000b) A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267:252–266CrossRefGoogle Scholar
  6. Augustin MA, Huber R, Kaiser JT (2001) Crystal structure of a DNA-dependent RNA polymerase (DNA primase). Nat Struct Biol 8:57–61CrossRefPubMedGoogle Scholar
  7. Bartolucci S, Rossi M, Cannio R (2003) Characterization and functional complementation of a nonlethal deletion in the chromosome of a beta-glycosidase mutant of Sulfolobus solfataricus. J Bacteriol 185:3948–3957CrossRefPubMedGoogle Scholar
  8. Bath C, Dyall-Smith ML (1998) His1, an archaeal virus of the Fuselloviridae family that infects Haloarcula hispanica. J Virol 72:9392–9395PubMedGoogle Scholar
  9. Bell SD, Jaxel C, Nadal M, Kosa PF, Jackson SP (1998) Temperature, template topology, and factor requirements of archaeal transcription. Proc Natl Acad Sci USA 95:15218–15222CrossRefPubMedGoogle Scholar
  10. Bettstetter M, Peng X, Garrett RA, Prangishvili D (2003) AFV1, a novel virus infecting hyperthermophilic archaea of the genus acidianus. Virology 315:68–79CrossRefPubMedGoogle Scholar
  11. Birkenbihl RP, Neef K, Prangishvili D, Kemper B (2001) Holliday junction resolving enzymes of archaeal viruses SIRV1 and SIRV2. J Mol Biol 309:1067–1076CrossRefPubMedGoogle Scholar
  12. Blum H, Zillig W, Mallok S, Domdey H, Prangishvili D (2001) The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses. Virology 281:6–9CrossRefPubMedGoogle Scholar
  13. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Microbiol 84:54–68Google Scholar
  14. Cammarano P, Teichner A, Londei P, Acca M, Nicolaus B, Sanz JL, Amils R (1985) Insensitivity of archaebacterial ribosomes to protein synthesis inhibitors. Evolutionary implications. EMBO J 4:811–816Google Scholar
  15. Cannio R, Contursi P, Rossi M, Bartolucci S (1998) An autonomously replicating transforming vector for Sulfolobus solfataricus. J Bacteriol 180:3237–3240PubMedGoogle Scholar
  16. Chen L, Brugger K, Skovgaard M, Redder P, She Q, Torarinsson E, Greve B, Awayez M, Zibat A, Klenk HP, Garrett RA (2005) The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J Bacteriol 187:4992–4999CrossRefPubMedGoogle Scholar
  17. Condo I, Ciammaruconi A, Benelli D, Ruggero D, Londei P (1999) Cis-acting signals controlling translational initiation in the thermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 34:377–384CrossRefPubMedGoogle Scholar
  18. Constantinesco F, Forterre P, Elie C (2002) NurA, a novel 5′–3′ nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea. EMBO Rep 3:537–542CrossRefPubMedGoogle Scholar
  19. Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie C (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447CrossRefPubMedGoogle Scholar
  20. Contursi P, Cannio R, Prato S, Fiorentino G, Rossi M, Bartolucci S (2003) Development of a genetic system for hyperthermophilic Archaea: expression of a moderate thermophilic bacterial alcohol dehydrogenase gene in Sulfolobus solfataricus. FEMS Microbiol Lett 218:115–120CrossRefPubMedGoogle Scholar
  21. Contursi P, Pisani FM, Grigoriev A, Cannio R, Bartolucci S, Rossi M (2004) Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus. Extremophiles 8:385–391CrossRefPubMedGoogle Scholar
  22. del Solar GH, Perez MJ, Espinosa M (1990) Plasmid pLS1-encoded RepA protein regulates transcription from repAB promoter by binding to a DNA sequence containing a 13-base pair symmetric element. J Biol Chem 265:12569–12575PubMedGoogle Scholar
  23. Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD (2003) A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell 11:275–282CrossRefPubMedGoogle Scholar
  24. Erauso G, Marsin S, Benbouzid RN, Baucher MF, Barbeyron T, Zivanovic Y, Prieur D, Forterre P (1996) Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J Bacteriol 178:3232–3237PubMedGoogle Scholar
  25. Gao YG, Su SY, Robinson H, Padmanabhan S, Lim L, McCrary BS, Edmondson SP, Shriver JW, Wang AH (1998) The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA. Nat Struct Biol 5:782–786CrossRefPubMedGoogle Scholar
  26. Geslin C, Le Romancer M, Erauso G, Gaillard M, Perrot G, Prieur D (2003) PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. J Bacteriol 185:3888–3894CrossRefPubMedGoogle Scholar
  27. Greve B, Jensen S, Brugger K, Zillig W, Garrett RA (2004a) Genomic comparison of archaeal conjugative plasmids from Sulfolobus . Archaea 1:231–239Google Scholar
  28. Greve B, Jensen S, Phan H, Brugger K, She Q, Zillig W, Garrett RA (2004b) Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. Archaea (published online 29.11.04)Google Scholar
  29. Grogan DW (1996) Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J Bacteriol 178:3207–3211PubMedGoogle Scholar
  30. Hjort K, Bernander R (2001) Cell cycle regulation in the hyperthermophilic crenarchaeon Sulfolobus acidocaldarius. Mol Microbiol 40:225–234CrossRefPubMedGoogle Scholar
  31. Jonuscheit M, Martusewitsch E, Stedman KM, Schleper C (2003) A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Mol Microbiol 48:1241–1252CrossRefPubMedGoogle Scholar
  32. Kawarabayasi Y, Hino Y, Horikawa H, Jin-no K, Takahashi M, Sekine M, Baba S, Ankai A, Kosugi H, Hosoyama A, Fukui S, Nagai Y, Nishijima K, Otsuka R, Nakazawa H, Takamiya M, Kato Y, Yoshizawa T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Masuda S, Yanagii M, Nishimura M, Yamagishi A, Oshima T, Kikuchi H (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140CrossRefPubMedGoogle Scholar
  33. Keeling PJ, Klenk HP, Singh RK, Feeley O, Schleper C, Zillig W, Doolittle WF, Sensen CW (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144CrossRefPubMedGoogle Scholar
  34. Kessler A, Brinkman AB, Van der OJ, Prangishvili D (2004) Transcription of the rod-shaped viruses SIRV1 and SIRV2 of the hyperthermophilic archaeon sulfolobus. J Bacteriol 186:7745–7753CrossRefPubMedGoogle Scholar
  35. Koonin EV (1992) Archaebacterial virus SSV1 encodes a putative DnaA-like protein. Nucleic Acids Res 20:1143PubMedGoogle Scholar
  36. Koonin EV (1993) A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res 21:2541–2547PubMedGoogle Scholar
  37. Kraft P, Kummel D, Oeckinghaus A, Gauss GH, Wiedenheft B, Young M, Lawrence CM (2004a) Structure of D-63 from sulfolobus spindle-shaped virus 1: surface properties of the dimeric four-helix bundle suggest an adaptor protein function. J Virol 78:7438–7442CrossRefGoogle Scholar
  38. Kraft P, Oeckinghaus A, Kummel D, Gauss GH, Gilmore J, Wiedenheft B, Young M, Lawrence CM (2004b) Crystal structure of F-93 from Sulfolobus spindle-shaped virus 1, a winged-helix DNA binding protein. J Virol 78:11544–11550CrossRefGoogle Scholar
  39. Lao-Sirieix SH, Bell SD (2004) The heterodimeric primase of the hyperthermophilic archaeon Sulfolobus solfataricus possesses DNA and RNA primase, polymerase and 3′-terminal nucleotidyl transferase activities. J Mol Biol 344:1251–1263CrossRefPubMedGoogle Scholar
  40. Lipps G, Ibanez P, Stroessenreuther T, Hekimian K, Krauss G (2001a) The protein ORF80 from the acidophilic and thermophilic archaeon Sulfolobus islandicus binds highly site-specifically to double-stranded DNA and represents a novel type of basic leucine zipper protein. Nucleic Acids Res 29:4973–4982CrossRefGoogle Scholar
  41. Lipps G, Stegert M, Krauss G (2001b) Thermostable and site-specific DNA binding of the gene product ORF56 from the Sulfolobus islandicus plasmid pRN1, a putative archael plasmid copy control protein. Nucleic Acids Res 29:904–913CrossRefGoogle Scholar
  42. Lipps G, Rother S, Hart C, Krauss G (2003) A novel type of replicative enzyme harbouring ATPase, primase and DNA polymerase activity. EMBO J 22:2516–2525CrossRefPubMedGoogle Scholar
  43. Lipps G, Weinzierl AO, von Scheven G, Buchen C, Cramer P (2004) Structure of a bifunctional DNA primase-polymerase. Nat Struct Mol Biol 11:157–162CrossRefPubMedGoogle Scholar
  44. Lower BH, Bischoff KM, Kennelly PJ (2000) The archaeon Sulfolobus solfataricus contains a membrane-associated protein kinase activity that preferentially phosphorylates threonine residues in vitro. J Bacteriol 182:3452–3459CrossRefPubMedGoogle Scholar
  45. Lundgren M, Andersson A, Chen L, Nilsson P, Bernander R (2004) Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. Proc Natl Acad Sci USA 101:7046–7051CrossRefPubMedGoogle Scholar
  46. Muskhelishvili G, Palm P, Zillig W (1993) SSV1-encoded site-specific recombination system in Sulfolobus shibatae. Mol Gen Genet 237:334–342PubMedGoogle Scholar
  47. Palm P, Schleper C, Grampp B, Yeats S, McWilliam P, Reiter WD, Zillig W (1991) Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology 185:242–250CrossRefPubMedGoogle Scholar
  48. Peng X, Holz I, Zillig W, Garrett RA, She Q (2000) Evolution of the Family of pRN Plasmids and their Integrase-mediated Insertion into the Chromosome of the Crenarchaeon Sulfolobus solfataricus. J Mol Biol 303:449–454CrossRefPubMedGoogle Scholar
  49. Peng X, Blum H, She Q, Mallok S, Brugger K, Garrett RA, Zillig W, Prangishvili D (2001) Sequences and replication of genomes of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses. Virology 291:226–234CrossRefPubMedGoogle Scholar
  50. Peng X, Kessler A, Phan H, Garrett RA, Prangishvili D (2004) Multiple variants of the archaeal DNA rudivirus SIRV1 in a single host and a novel mechanism of genomic variation. Mol Microbiol 54:366–375CrossRefPubMedGoogle Scholar
  51. Pisani FM, De Felice M, Carpentieri F, Rossi M (2000) Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. J Mol Biol 301:61–73CrossRefPubMedGoogle Scholar
  52. Prangishvili D, Garrett RA (2004) Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans 32:204–208CrossRefPubMedGoogle Scholar
  53. Prangishvili D, Albers SV, Holz I, Arnold HP, Stedman K, Klein T, Singh H, Hiort J, Schweier A, Kristjansson JK, Zillig W (1998a) Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40:190–202CrossRefGoogle Scholar
  54. Prangishvili D, Klenk HP, Jakobs G, Schmiechen A, Hanselmann C, Holz I, Zillig W (1998b) Biochemical and phylogenetic characterization of the dUTPase from the archaeal virus SIRV. J Biol Chem 273:6024–6029CrossRefGoogle Scholar
  55. Prangishvili D, Arnold HP, Gotz D, Ziese U, Holz I, Kristjansson JK, Zillig W (1999) A novel virus family, the Rudiviridae: structure, virus–host interactions and genome variability of the sulfolobus viruses SIRV1 and SIRV2. Genetics 152:1387–1396PubMedGoogle Scholar
  56. Prangishvili D, Stedman K, Zillig W (2001) Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol 9:39–43CrossRefPubMedGoogle Scholar
  57. Pucci B, De Felice M, Rossi M, Onesti S, Pisani FM (2004) Amino acids of the Sulfolobus solfataricus mini-chromosome maintenance-like DNA helicase involved in DNA binding/remodeling. J Biol Chem 279:49222–49228CrossRefPubMedGoogle Scholar
  58. Purschke WG, Schaefer G (2001) Independent replication of the plasmids pRN1 and pRN2 in the archaeon Sulfolobus islandicus. FEMS Microbiol Lett 200:97–102CrossRefPubMedGoogle Scholar
  59. Qureshi SA, Bell SD, Jackson SP (1997) Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J 16:2927–2936CrossRefPubMedGoogle Scholar
  60. Rasooly A, Rasooly RS (1997) How rolling circle plasmids control their copy number. Trends Microbiol 5:440–446CrossRefPubMedGoogle Scholar
  61. Reilly MS, Grogan DW (2001) Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. J Bacteriol 183:2943–2946CrossRefPubMedGoogle Scholar
  62. Reiter WD, Palm P, Yeats S, Zillig W (1987) Gene expression in archaebacteria physical mapping of constitutive and uv-inducible transcripts from the sulfolobus virus-like particle ssv1. Mol Gen Genet 209:270–275CrossRefGoogle Scholar
  63. Reiter WD, Palm P, Zillig W (1988) Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res 16:2445–2459PubMedGoogle Scholar
  64. Rice G, Tang L, Stedman K, Roberto F, Spuhler J, Gillitzer E, Johnson JE, Douglas T, Young M (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 101:7716–7720CrossRefPubMedGoogle Scholar
  65. Roberts JA, White MF (2005) An archaeal endonuclease displays key properties of both eukaryal XPF-ERCC1 and Mus81. J Biol Chem 280:5924–5928CrossRefPubMedGoogle Scholar
  66. Roberts JA, Bell SD, White MF (2003) An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol 48:361–371CrossRefPubMedGoogle Scholar
  67. Robinson NP, Dionne I, Lundgren M, Marsh VL, Bernander R, Bell SD (2004) Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 116:25–38CrossRefPubMedGoogle Scholar
  68. Savino C, Federici L, Johnson KA, Vallone B, Nastopoulos V, Rossi M, Pisani FM, Tsernoglou D (2004) Insights into DNA replication: the crystal structure of DNA polymerase B1 from the archaeon Sulfolobus solfataricus. Structure 12:2001–2008CrossRefPubMedGoogle Scholar
  69. Schafer G (1996) Bioenergetics of the archaebacterium Sulfolobus. Biochim Biophys Acta 1277:163–200PubMedGoogle Scholar
  70. Schelert J, Dixit V, Hoang V, Simbahan J, Drozda M, Blum P (2004) Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J Bacteriol 186:427–437CrossRefPubMedGoogle Scholar
  71. Schleper C, Kubo K, Zillig W (1992) The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proc Natl Acad Sci USA 89:7645–7649PubMedGoogle Scholar
  72. Schleper C, Holz I, Janekovic D, Murphy J, Zillig W (1995) A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol 177:4417–4426PubMedGoogle Scholar
  73. Serre MC, Letzelter C, Garel JR, Duguet M (2002) Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase. J Biol Chem 277:16758–16767CrossRefPubMedGoogle Scholar
  74. She Q, Phan H, Garrett RA, Albers SV, Stedman KM, Zillig W (1998) Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2:417–425CrossRefPubMedGoogle Scholar
  75. She Q, Peng X, Zillig W, Garrett RA (2001a) Gene capture in archaeal chromosomes. Nature 409:478CrossRefGoogle Scholar
  76. She Q, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CC, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PM, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Van der OJ (2001b) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840CrossRefGoogle Scholar
  77. She Q, Brugger K, Chen L (2002) Archaeal integrative genetic elements and their impact on genome evolution. Res Microbiol 153:325–332CrossRefPubMedGoogle Scholar
  78. She Q, Shen B, Chen L (2004) Archaeal integrases and mechanisms of gene capture. Biochem Soc Trans 32:222–226CrossRefPubMedGoogle Scholar
  79. Snyder JC, Stedman K, Rice G, Wiedenheft B, Spuhler J, Young MJ (2003) Viruses of hyperthermophilic Archaea. Res Microbiol 154:474–482CrossRefPubMedGoogle Scholar
  80. Stedman KM, Schleper C, Rumpf E, Zillig W (1999) Genetic requirements for the function of the archaeal virus SSV1 in Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 152:1397–1405PubMedGoogle Scholar
  81. Stedman KM, She Q, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W (2000) pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J Bacteriol 182:7014–7020CrossRefPubMedGoogle Scholar
  82. Steitz TA, Smerdon SJ, Jager J, Joyce CM (1994) A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266:2022–2025PubMedGoogle Scholar
  83. Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Huttenhofer A (2005) Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55:469–481CrossRefPubMedGoogle Scholar
  84. Tolstrup N, Sensen CW, Garrett RA, Clausen IG (2000) Two different and highly organized mechanisms of translation initiation in the archaeon Sulfolobus solfataricus. Extremophiles 4:175–179CrossRefPubMedGoogle Scholar
  85. Wiedenheft B, Stedman K, Roberto F, Willits D, Gleske AK, Zoeller L, Snyder J, Douglas T, Young M (2004) Comparative genomic analysis of hyperthermophilic archaeal Fuselloviridae viruses. J Virol 78:1954–1961CrossRefPubMedGoogle Scholar
  86. Wood AG, Whitman WB, Konisky J (1989) Isolation and characterization of an archaebacterial viruslike particle from Methanococcus voltae A3. J Bacteriol 171:93–98PubMedGoogle Scholar
  87. Worthington P, Hoang V, Perez-Pomares F, Blum P (2003) Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488CrossRefPubMedGoogle Scholar
  88. Ziegelin G, Scherzinger E, Lurz R, Lanka E (1993) Phage P4 alpha protein is multifunctional with origin recognition, helicase and primase activities. EMBO J 12:3703–3708PubMedGoogle Scholar
  89. Ziegelin G, Linderoth NA, Calendar R, Lanka E (1995) Domain structure of phage P4 alpha protein deduced by mutational analysis. J Bacteriol 177:4333–4341PubMedGoogle Scholar
  90. Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain J, Lanzendoerfer M, Kristjansson JK (1994) Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Syst Appl Microbiol 16:609–628Google Scholar
  91. Zillig W, Prangishvilli D, Schleper C, Elferink M, Holz I, Albers S, Janekovic D, Gotz D (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic archaea. FEMS Microbiol Rev 18:225–236CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of BiochemistryUniversity of BayreuthBayreuthGermany

Personalised recommendations