Advertisement

Extremophiles

, Volume 10, Issue 2, pp 85–96 | Cite as

Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents

  • Margarita L. Miroshnichenko
  • Elizaveta A. Bonch-Osmolovskaya
Review

Abstract

The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000–2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

Keywords

Deep-sea hydrothermal vents Thermophilic prokaryotes Biodiversity 

Notes

Acknowledgements

This work was supported by “Molecular and Cell Biology” and “Biodiversity” programs of Russian Academy of Sciences.

References

  1. Alain K, Olagnon M, Desbruyères D, Pagé A, Barbier G, Juniper SK, Quérellou J, Cambon-Bonavita M-A (2002a) Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42:463–476CrossRefGoogle Scholar
  2. Alain K, Quérelou J, Lesongeur F, Pignet P, Crassous P, Raguénès G, Cueff V, Cambon-Bonavita M-A (2002b) Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vents. Int J Syst Evol Microbiol 52:1317–1323CrossRefGoogle Scholar
  3. Alain K, Marteinsson VT, Miroshnichenko ML, Bonch-Osmolovskaya EA, Prieur D, Birrien J-L (2002c) Marinitoga piezophila sp. nov., a rod-shaped thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339CrossRefGoogle Scholar
  4. Alain K, Pignet P, Zbinden M, Quillevere M, Duchiron F, Donval JP, Lesongeur F, Raguénès G, Crassous R, Quérelou J, Cambon-Bonavita M-A (2002d) Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628CrossRefGoogle Scholar
  5. Alain K, Rolland S, Crassous P, Lesongeur F, Zbinden M, Le Gall C, Godfroy A, Pagé A, Juniper SK, Cambon-Bonavita M-A, Duchiron F, Quérellou J (2003) Desulfurobacterium crinifex sp. nov., a novel thermophilic pinkish-streamer forming chemolithotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. Extremophiles 7:361–370CrossRefPubMedGoogle Scholar
  6. Alain K, Zbinden M, Le Bris N, Lesonqeur F, Quérellou J, Gaill F, Cambon-Bonavita M-A (2004) Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6:227–241CrossRefPubMedGoogle Scholar
  7. Antoine E, Cilia V, Meunier JR, Guenzennec J, Lesongeuer F, Barbier G (1997) Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the Southwestern Pacific Ocean. Int J Syst Bacteriol 47(4):1118–1123PubMedGoogle Scholar
  8. Blöchl E, Burggraf S, Fiala G, Lauerer G, Huber G, Huber R, Rachel R, Segerer A, Stetter KO, Völkl P (1995) Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:9–16CrossRefGoogle Scholar
  9. Blöchl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii gen. nov., sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21CrossRefPubMedGoogle Scholar
  10. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeoglobus profundus, sp. nov., represents a new species within the sulfate-reducing archaeobacteria. Syst Appl Microbiol 13:24–28Google Scholar
  11. Campbell BJ, Jeanthon C, Joel E, Kostka E, Luther GW, Cary SC (2001) Growth and phylogenetic properties of novel bacteria belonging to the Epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67:4566–4572CrossRefPubMedGoogle Scholar
  12. Corre E, Reysenbach A-L, Prieur D (2001) Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335CrossRefPubMedGoogle Scholar
  13. Fardeau M-L, Bonilla-Salinas M, L’Haridon S, Jeanthon C, Verhé F, Cayol J-L, Patel B, Garcia J-L, Ollivier B (2004) Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. Nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474CrossRefPubMedGoogle Scholar
  14. Fiala G, Stetter KO, Jannasch HW, Langworthy TA, Madon J (1986) Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaeobacteria growing up to 98°C. Syst Appl Microbiol 8:106–113Google Scholar
  15. Götz D, Banta A, Beveridge TG, Rushdi AI, Simoneit BRT, Reysenbach A-L (2002) Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel thermophilic hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359CrossRefPubMedGoogle Scholar
  16. Greene AC, Patel BKC, Sheehy A (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509PubMedGoogle Scholar
  17. Habbad A, Camacho P, Durand P, Cary SC (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61:1679–1687PubMedGoogle Scholar
  18. Hatchikian EC, Ollivier B, Garcia J-L (2001) Thermodesulfobacteriaceae. In: Boone DR, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 390–393Google Scholar
  19. Henry EA, Devereux R, Maki JS, Gilmour CC, Woese CR, Mandelco L, Scauder R, Remsen CC, Mitchel R (1994) Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161:62–69PubMedGoogle Scholar
  20. Hoek J, Banta A, Hubler F, Reysenbach A-L (2003) Microbial diversity of a sulfide spire located in the Edmond deep-sea hydrothermal vent field on the Central Indian Ridge. Geobiology 1:119–127CrossRefGoogle Scholar
  21. Hohn MJ, Hedlund BP, Huber H (2002) Detection of 16S rDNA sequences representing the novel phylum “Nanoarchaeota”: indication for a wide distribution in high temperature biotopes. Syst Appl Microbiol 25:551–554CrossRefPubMedGoogle Scholar
  22. Huber H, Burggraf S, Mayer T, Wyschkony I, Rachel R, Stetter KO (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp. nov. and Ignicoccus pacificus sp. nov. Int J Syst Evol Microbiol 50:2093–2100PubMedGoogle Scholar
  23. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67CrossRefPubMedGoogle Scholar
  24. Huber JA, Butterfield DA, Baross JA (2002) Temporal changes in archaeal diversity and chemistry in a midocean ridge subseafloor habitat. Appl Environ Microbiol 68:1585–1594CrossRefPubMedGoogle Scholar
  25. Huber JA, Butterfield DA, Baross JA (2003) Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43:393–409CrossRefGoogle Scholar
  26. Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12:32–37Google Scholar
  27. Huber R, Wilharm T, Huber D, Trincone A, Burggraf S, König H, Rachel R, Rockinger I, Fricke H, Stetter KO (1992) Aquifex pyrophilus gen. nov. sp. nov., represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351Google Scholar
  28. Huber R, Jannasch H, Rachel R, Fuchs T, Stetter KO (1997) Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380Google Scholar
  29. Huber R, Diller S, Horn C, Rachel R (2002) Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52:1859–1865CrossRefPubMedGoogle Scholar
  30. Jeanthon C (2000) Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek (J Microbiol Serol) 77:117–133CrossRefGoogle Scholar
  31. Jeanthon C, L’Haridon S, Reysenbach A-L, Corre E, Vernet M, Messner P, Sleytr UB (1999) Methanococcus vulcanius sp nov, a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213(T) as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589PubMedGoogle Scholar
  32. Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach A-L, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52:765–772CrossRefPubMedGoogle Scholar
  33. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D (2003) Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from deep-sea hydrothermal vents that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851CrossRefPubMedGoogle Scholar
  34. Jolivet E, Corre E, L’Haridon S, Forterre P, Prieur D (2004) Thermococcus marinus sp. nov. and Thermococcus radiotolerans sp. nov., two hyperthermophilic archaea from deep-sea hydrothermal vents that resist ionizing radiation. Extremophiles 8:219–227CrossRefPubMedGoogle Scholar
  35. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  36. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRefPubMedGoogle Scholar
  37. Kashefi K, Tor JM, Holmes DE, Gaw Van Praagh CV, Reysenbach AL, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52:719–728CrossRefPubMedGoogle Scholar
  38. Kashefi K, Holmes DE, Barros JA, Lovley DR (2003) Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol 69:2985–2993CrossRefPubMedGoogle Scholar
  39. Kawasumi T, Igarashi Y, Kodama T, Minoda Y (1984) Hydrogenobacter thermophilus gen. nov., sp. nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 34:5–10Google Scholar
  40. Kryukov VR, Saveleva ND, Pusheva MA (1983) Calderobacterium hydrogenophilum, nov. gen., nov. sp., an extremely thermophilic hydrogen bacterium and its hydrogenase activity (in Russian). Mikrobiologiya 52:781–788Google Scholar
  41. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247CrossRefGoogle Scholar
  42. L’Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Prieur D, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulfur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711PubMedGoogle Scholar
  43. L’Haridon S, Reysenbach A-L, Banta A, Messner P, Schumann P, Stackebrandt E, Jeanthon C (2003) Methanocaldococcus indicus sp. nov., a novel hyperthermophilic methanogen isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 53:1931–1935CrossRefPubMedGoogle Scholar
  44. Longenecker K, Reysenbach A-L (2001) Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. FEMS Microbiol Ecol 35:287–293CrossRefPubMedGoogle Scholar
  45. Lopez-Garcia P, Gaill F, Moreira D (2002) Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol 4:204–215CrossRefPubMedGoogle Scholar
  46. Lopez-Garcia P, Duperron S, Philippot P, Foriel J, Susini J, Moreira D (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol 5:961–976CrossRefPubMedGoogle Scholar
  47. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286CrossRefPubMedGoogle Scholar
  48. Marteinsson VT (1999) Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3:247–251CrossRefPubMedGoogle Scholar
  49. Marteinsson VT, Birrien JL, Prieur D (1997) In situ enrichment and isolation of thermophilic microorganisms from deep-sea hydrothermal environments. Can J Microbiol 43:694–697Google Scholar
  50. Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr U, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under hydrostatic pressure. Int J Syst Bacteriol 49:351–359PubMedGoogle Scholar
  51. Miroshnichenko ML, Kostrikina NA, L’Haridon S, Jeanthon S, Hippe S, Stackebrandt E, Bonch-Osmolovskaya EA (2002) Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304CrossRefPubMedGoogle Scholar
  52. Miroshnichenko ML, Slobodkin AI, Kostrikina NA, L’Haridon S, Nercessian O, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003a) Deferribacter abyssi sp. nov.—a new anaerobic thermophilic bacterium from the deep-sea hydrothermal vents of the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 53:1637–1641CrossRefGoogle Scholar
  53. Miroshnichenko ML, L’Haridon S, Jeanthon C, Antipov AN, Kostrikina NA, Chernyh NA, Tindall B, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003b) Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:747–752CrossRefGoogle Scholar
  54. Miroshnichenko ML, L’Haridon S, Nersessian O, Antipov AN, Kostrikina NA, Tindall B, Schumann P, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA, Jeanthon C (2003c) Vulcanithermus mediatlanticus gen. nov., sp. nov., a novel member of the family Thermaceae from a deep-sea hot vent. Int J Syst Evol Microbiol 53:1143–1148CrossRefGoogle Scholar
  55. Miroshnichenko ML, Kostrikina NA, Chernyh NA, Pimenov NV, Tourova TP, Antipov AN, Spring S, Stackebrandt E, Bonch-Osmolovskaya EA (2003d) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:747–752CrossRefGoogle Scholar
  56. Miroshnichenko ML, L’Haridon S, Schumann P, Spring S, Bonch-Osmolovskaya EA, Jeanthon C, Stackebrandt E (2004) Caminibacter profundus sp. nov., isolated from a deep-sea hydrothermal vent represents a novel thermophilic bacterium of the Nautiliales ord. nov. within the class “Epsilonproteobacteria”. Int J Syst Evol Microbiol 54:41–45CrossRefPubMedGoogle Scholar
  57. Mori K, Kakegawa T, Yowsuke H, Nakamura K, Maruyama A, Hanada S (2004) Oceanithermus desulfurans sp. nov., a novel thermophilic, sulfur-reducing bacterium isolated from a sulfide chimney in Suiyo Seamount. Int J Syst Evol Microbiol 54:1561–1566CrossRefPubMedGoogle Scholar
  58. Moussard H, L’Haridon S, Tindall BJ, Banta A, Schumann P, Stackebrandt E, Reysenbach A-L, Jeanthon C (2004) Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54:227–233CrossRefPubMedGoogle Scholar
  59. Moyer C, Dobbs F, Karl D (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount. Hawaii. Appl Environ Microbiol 61:1555–1562PubMedGoogle Scholar
  60. Nakagawa S, Takai K, Horikoshi K, Sako Y (2003) Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869CrossRefPubMedGoogle Scholar
  61. Nakagawa S, Takai K, Horikoshi K, Sako Y (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54:329–335CrossRefPubMedGoogle Scholar
  62. Nakagawa S, Takai K, Inagaki F, Horikoshi K, Sako Y (2005) Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the epsilon-Proteobacteria 4 isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55:925–933CrossRefPubMedGoogle Scholar
  63. Nercessian O, Reysenbach A-L, Prieur D, Jeanthon C (2003) Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ Microbiol 5:492–502CrossRefPubMedGoogle Scholar
  64. Pley U, Schipka J, Gambacorta A, Jannasch H, Fricke H, Rachel R, Stetter KO (1991) Pyrodictium abyssi, sp. nov. represents a novel heterotrophic marine hyperthermophilic archaeon growing at 110°C. Syst Appl Microbiol 14:245–253Google Scholar
  65. Postec A, Le Breton C, Fardeau M-L, Lesongeur F, Pignet P, Querellou J, Ollivier B, Godfroy A (2005) Marinitoga hydrogenitolerans sp. nov., a novel member of the order Thermotogales isolated from a black smocker chimney on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:1217–1221CrossRefPubMedGoogle Scholar
  66. Prieur D, Jeanthon C, Erauso G (1995) Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122CrossRefPubMedGoogle Scholar
  67. Prokofeva MI, Kublanov IV, Nercessian O, Tourova TP, Kolganova TV, Bonch-Osmolovskaya EA, Spring S, Jeanthon C (2005) Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea habitats. Extremophiles (in press)Google Scholar
  68. Reysenbach A-L (2001a) Thermotogales. In: Ed: DR Boone, GM Garrity Bergey’s Manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 369–387Google Scholar
  69. Reysenbach A-L (2001b) Aquificales. In: Boone DR, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp369–387Google Scholar
  70. Reysenbach A-L, Banta A, Boone DR, Cary SC, Luther GW (2000a) Microbial essentials at hydrothermal vents. Nature 404:835–836CrossRefGoogle Scholar
  71. Reysenbach A-L, Longnecker K, Kirshtein J (2000b) Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3788–3797CrossRefGoogle Scholar
  72. Reysenbach A-L, Götz D, Banta A, Jeanthon C, Fouquet Y (2002) Expanding the distribution of the Aquificales to the deep-sea vents on Mid-Atlantic Ridge and Central Indian Ridge. Cah Biol Mar 43:425–428Google Scholar
  73. Sako Y, Nakagawa S, Takai K, Horikoshi K (2003) Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65CrossRefPubMedGoogle Scholar
  74. Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57CrossRefGoogle Scholar
  75. Sievert SM, Kuever JM, Muyzer G (2000) Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109CrossRefPubMedGoogle Scholar
  76. Skirnisdottir S, Hreggvidsson GO, Holst O, Kristjansson JK (2001) Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus. Extremophiles 5:45–51CrossRefPubMedGoogle Scholar
  77. Slobodkin AI, Jeanthon C, L’Haridon S, Nazina TN, Miroshnichenko ML, Bonch-Osmolovskaya EA (1999) Dissimilatory reduction of Fe(III) by thermophilic Bacteria and Archaea in deep subsurface petroleum reservoirs of western Siberia. Curr Microbiol 39:99–102CrossRefPubMedGoogle Scholar
  78. Slobodkin AI, Campbell B, Cary CS, Bonch-Osmolovskaya EA, Jeanthon C (2001) Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise). FEMS Microbiol Ecol 36:235–243CrossRefPubMedGoogle Scholar
  79. Slobodkin AI, Tourova TP, Kostrikina NA, Chernyh NA, Bonch-Osmolovskaya EA, Jeanthon C, Jones BE (2003) Tepidibacter thalassicus gen. nov., sp. nov., a novel moderately thermophilic, anaerobic fermentative bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:1131–1134CrossRefPubMedGoogle Scholar
  80. Sokolova TG, Gonzales JM, Kostrikina NA, Chernyh NA, Tourova TP, Kato C, Bonch-Osmolovskaya EA, Robb FT (2001) Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51:141–149PubMedGoogle Scholar
  81. Sokolova TG, Kostrikina NA, Chernyh NA, Tourova TP, Bonch-Osmolovskaya EA (2002) Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967CrossRefPubMedGoogle Scholar
  82. Sokolova TG, Jeanthon C, Kostrikina NA, Chernyh NA, Lebedinsky AV, Stackebrandt E, Bonch-Osmolovskaya EA (2004a) The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8:317–323CrossRefGoogle Scholar
  83. Sokolova TG, González JM, Kostrikina NA, Chernyh NA, Slepova TV, Bonch-Osmolovskaya EA, Robb FT (2004b) Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic thermophilic carbon monoxide oxidizing hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54:2353–2359CrossRefGoogle Scholar
  84. Stetter KO (1996) Hyperthermophilic prokaryotes. FEMS Microbiol Rev 18:149–158CrossRefGoogle Scholar
  85. Subbotina IV, Chernyh NA, Lebedinsky AV, Kublanov IV, Bonch-Osmolovskaya EA (2003) Oligonucleotide probes for detection of the representatives of genus Thermoanaerobacter. Microbiology (English Translation of Mikrobiologia) 72:331–339Google Scholar
  86. Svetlichny VA, Sokolova TG, Gerhardt M, Ringpfeil M, Kostrikina NA, Zavarzin GA (1991) Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14:254–260Google Scholar
  87. Svetlitchny VA, Peschel C, Acker G, Meyer O (2001) Two membrane-associated NiFeS–carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J Bacteriol 183:5134–5144CrossRefPubMedGoogle Scholar
  88. Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic gas studies: methods, results and applications. In: Carroland MR, Holloway JR (eds) Volatiles in magma. Mineralogical Society of America, Washington DC, pp 1–66Google Scholar
  89. Takai K, Horikoshi K (2000) Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vents in Japan. Extremophiles 4:9–17PubMedGoogle Scholar
  90. Takai K, Sugai A, Itoh T, Horikoshi K (2000) Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500PubMedGoogle Scholar
  91. Takai K, Inone A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov, thermophilic methane-producing archaeon isolated from a western Pacific deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1089–1095CrossRefPubMedGoogle Scholar
  92. Takai K, Nakagawa S, Sako Y, Horikoshi K (2003a) Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954CrossRefGoogle Scholar
  93. Takai K, Kobayashi H, Nealson KH, Horikoshi K (2003b) Deferribacter desulfuricans sp. nov., a novel sulfur- nitrate- or arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53:839–846CrossRefGoogle Scholar
  94. Takai K, Inagaki F, Nakagawa S, Hirayama H, Nunoura T, Sako Y, Nealson KH, Horikoshi K (2003c) Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174CrossRefGoogle Scholar
  95. Takai K, Nealson KH, Horikoshi K (2004a) Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32CrossRefGoogle Scholar
  96. Takai K, Nealson KH, Horikoshi K (2004b) Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge. Int J Syst Evol Microbiol 54:1095–1100CrossRefGoogle Scholar
  97. Takai K, Gamo T, Tsunogai U, Nakayama N, Hirayama H, Nealson KH, Horikoshi K (2004c) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8:269–283CrossRefGoogle Scholar
  98. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealson K, Horikoshi K (2005) Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogenoxidizing chemolithoautotroph within epsilon-Proteobacteria isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55:183–189CrossRefPubMedGoogle Scholar
  99. Teske A, Hinrichs K-U, Edgcomb V, de Vera Gomez A, Kysela D, Sylva SP, Sogin MP, Jannasch HW (2002) Microbial diversity of hydrothermal sediments in the Guaymas basin. Evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007CrossRefPubMedGoogle Scholar
  100. Urios L, Cueff V, Pignet P, Barbier G (2004a) Tepidibacter formicigenes sp. nov., a novel spore-forming bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:439–443CrossRefGoogle Scholar
  101. Urios L, Cueff-Gauchard V, Pignet P, Postec A, Fardeau M-L, Ollivier B, Barbier G (2004b) Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge. Int J Syst Evol Microbiol 54:1953–1957CrossRefGoogle Scholar
  102. Vandamme P, De Ley J (1991) Proposal for a new family, Campylobacteraceae. Int J Syst Bacteriol 41:451–455Google Scholar
  103. Vetriani C, Speck MD, Ellor SV, Kutz RA, Starovoitov V (2004) Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54:175–181CrossRefPubMedGoogle Scholar
  104. Voordeckers JW. Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779CrossRefPubMedGoogle Scholar
  105. Wery N, Lesongeur F, Pignet P, Derennes V, Cambon-Bonavita MA, Godfroy A, Barbier G (2001a) Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504Google Scholar
  106. Wery N, Moricet JM, Cueff V, Jean J, Pignet P, Lesongeur F, Cambon-Bonavita M-A, Barbier G (2001b) Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796Google Scholar
  107. Williams RAD, Da Costa MS (1992) The genus Thermus and related microorganisms. In: Ballows A, Trüper HG, Dworkin M, Harber W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 3645–3753Google Scholar
  108. Zhao H, Wood AG, Widdel F, Bryant M (1988) An extremely thermophilic Methanococcus from the deep-sea hydrothermal vent and its plasmid. Arch Microbiol 150:178–183CrossRefGoogle Scholar
  109. Zillig W, Reysenbach A-L (2001) Thermococcales. In: Boone DR, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, Berlin Heidelberg New York, pp 341–347Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Margarita L. Miroshnichenko
    • 1
  • Elizaveta A. Bonch-Osmolovskaya
    • 1
  1. 1.Institute of MicrobiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations